• Le fonds

1 > Historique des travaux en Himalaya du XIXe siècle à l’actuel (G. Mascle et A. Pêcher)

Quelque ouvrages thématiques et articles de synthèse.

Avouac P. & De Wever P. (Ed.) (2002). – Himalaya-Tibet : le choc des continents. Paris, MNHN-CNRS.

Avouac P. (2007). – Dynamic Processes in Extensional and Compressional Settings - Mountain Building: from Earthquakes to Geological Deformation. In Schubert G. Ed. Treatise of Geophysics 6, 377-459.

Hodges K.V. (2000). – Tectonis of the Himalaya and southern Tibet from two perspectives. Geol. Soc. America Bull., 112,324-350.  

Le Fort P. (1975). – Himalaya: the collided range. Amer. J. Sci., 275, 1-44.

Mascle G., Pêcher A. & Guillot S. (2010). – Himalaya-Tibet : la collision continentale Inde-Eurasie. Paris, Vuibert-Soc. Géol. France-Nepal Geol. Soc. Eds., 250 p.

Steck A. (2003). – Geology of the NW Indian Himalya. Ecl. Geol. Helv., 96, 147-196.

Valdiya K.S. (1998). – Dynamic Himalaya. Hyderabad, Universities Press, 178 p.

Yin A. (2006). – Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation: Earth-Science Reviews, 76, 1-131.

 

Quelques références importantes.

Argand E. (1924). – La tectonique de l’Asie. C.R. 13ème Congr. Géol. Intern. Bruxelles, 171-372.

Auden J.B. (1935). – Traverses in the Himalaya. Rec Geol. Surv. India, 69, 123-167.

Bonvalot (1896). – L'Asie inconnue, à travers le Tibet. Paris, Flammarion.

Bordet P. et Latreille M. (1958). – Esquisse géologique de la région de l’Everest et du Makalu, 1/50 000. Paris, CNRS.

Dainelli G. (1933-34). – La Serie dei Terreni. Bologna, Zanicchelli.

De Terra H. (1935). – Geological studies in the North-West Himalayas between the Kashmir and Indus Valley. Mem. Connecticut Ac. Arts Sc., 8, 18-76.

Dewey J.F. & Bird J.M. (1970). – Mountain belts and the new global tectonics. J. Geoph. Res., 75, 2625-2647.

Diener D. (1898). – Notes on the geological structure of the Chitichun region. Geol. Surv. India, Mem., 26.

Dutreuil de Rhins (1897-1898). – Mission scientifique dans la Haute-Asie 1890-1895 (en trois volumes). Paris, E. Leroux.

Gansser A. (1964). – Geology of the Himalayas. New-York, J. Wiley Ed., 302 p.

Griesbach C.L. (1891). – Geology of the central Himalaya. Geol. Surv. India, Mem., 23, 1-232.

Hayden H.H. (1904). – The geology of Spiti and parts of Bashar and Rupshu. Geol. Surv. India, Mem., 36, I, 1-129.

Hayden H.H. (1907). – The geology of the provinces Tang and U in central Tibet. Geol. Surv. India, Mem., 36, II, 1-80.

Hedin Sven (1909). – Transhimalaia. Brockhaus Ed.

Heim A. & Gansser A. (1939). – Central Himalaya: geological observations of the Swiss expedition 1936. Mém. Soc. Helvet. Sc. Nat., 73, 1-246.

Heron A.M. (1922). – in Howard-Bury C.K. & G. Mallory (1922). Mount Everest: The Reconnaissance 1921. Kindle Ed.

Ichac M. & Pruvost P. (1951). – Résultats géologiques de l’expédition française de 1950 à l’Himalaya. C.R.Ac. Sc., 232, 1617-1619.

Medlicott H. (1864). – On the geological structure and relations of the southern portion of the Himalayan ranges between the rivers Ganges and Ravee. Geol. Surv. India, Mem., 3.

Middlemiss C.S. (1887). – Crystalline and metamorphic rocks of the Lower Himalaya, Garwhal and Kumaon. Rec Geol. Surv. India, 20, 134-143.

Middlemiss C.S. (1910). – A revision of the Silurian-Trias sequence in Kashmir. Rec Geol. Surv. India, 40 (3), 206-260.

Norin E. (1946). – Geological explorations in western Tibet. Rep. Sino-Swedish Expedition, 29, Aktiebolaget Thule, Stockholm, 214 p.

Oldham R.D. (1883). – Notes on a traverse between Almora and Mussoree made in October 1882. Rec Geol. Surv. India, 16, 162-164.

Pilgrim G.E. & West W.D. (1928). – The structure and correlation of Simla rocks. Geol. Surv. India, Mem., 53, 1-140.

Stoliczka F. (1865). – Geological sections across the Himalayan mountains, from Wantu bridge on the river Sutlej to Sungdo on the Indus, with an account of the formations in Spiti, accompanied by a revision of all known fossils from that district. Geol. Surv. India, Mem., 5, 1-154.

Strachey R. (1851). – On the geology of part on the Himalaya Mountains and Tibet. Quart. J. Geol. Soc. London, 7, 292-310.

Tapponnier P. et Molnar P. (1977). – Active tectonics of Tibet. J. Geoph. Res., 83, 5361-5375.

Uhlig V. (1903-1910). – The fauna of the Spiti shales. Paleont. Ind., ser 15, 4, 1-395.

Von Kraft A. (1902). – Notes on the « Exotic blocks » of Malla Johar in the Bhot Mahals of Kumaon. Geol. Surv. India, Mem., 32.

Von Loczy L. (1907). – Beobachtungen in östlischen Himalaia. (Vom 8-28 Februar 1878). Földrajsi Közlemények, 35 (9), 1-23.

Wadia D.N. (1928). – The geology of Poonch state (Kashmir) and adjacent portions of the Punjab. Geol. Surv. India, Mem., 51, 185-370.

 

 

2 > La haute chaîne himalayenne et sa structuration (G. Mahéo et P. H. Leloup)

Aubray, A. (2017). – Structure et métamorphisme de la Klippe de Jaljala (Népal Central), implications sur les modèles de formation de l’Himalaya, Thèse de Doctorat, ENS de Lyon.

Arita, K. (1983). – Origin of the inverted metamorphism of the Lower Himalayas, central Nepal. Tectonophysics, 95, 43-60.

Beaumont, C., Jamieson, R., Nguyen, M., and Lee, B. (2001). – Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414, 738-742.

Blanford, W. and Medlicott, H. (1879). – A manual of the geology of India. Geological Survey of India, Calcutta.

Brunel, M. (1983). – Etude pétro-structurale des chevauchements ductiles en Himalaya (Népal oriental et Himalaya du Nord-Ouest), Thèse de Doctorat.

Brunel, M. (1986). – Ductile thrusting in the Himalayas: shear sense criteria and stretching lineations. Tectonics, 5, 247-265.

Bollinger, L., Henry, P., & Avouac, J. (2006). – Mountain building in the Nepal Himalaya: Thermal and kinematic model. Earth and Planetary Science Letters, 244(1), 58-71.

Burchfiel, B., and Royden, L.H. (1985). – North-south extension within the convergent Himalayan region. Geology, 13, 679-682.

Burchfiel, B. C., Zhiliang, C., Hodges, K. V., Yuping, L., Royden, L. H., Changrong, D., & Jiene, X. (1992). – The South Tibetan detachment system, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geological Society of America Special Papers, 269, 1-41.

Burg, J., Brunel, M., Gapais, D., Chen, G., and Liu, G. (1984). – Deformation of leucogranites of the crystalline Main Central Sheet in southern Tibet (China). Journal of Structural Geology, 6, 535-542.

Davis, D., Suppe, J., & Dahlen, F. A. (1983). – Mechanics of foldandthrust belts and accretionary wedges. Journal of Geophysical Research. Solid Earth, 88(B2), 1153-1172.

Carosi, R., Montomoli, C., Iaccarino, S., Massonne, H. J., Rubatto, D., Langone, A. et al. (2016). – Middle to late Eocene exhumation of the Greater Himalayan Sequence in the Central Himalayas: Progressive accretion from the Indian plate. Geological Society of America Bulletin, 128(11-12), 1571-1592.

Cottle, J. M., Larson, K. P., & Kellett, D. A. (2015). – How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen. Journal of Structural Geology, 78, 119-133.

DeCelles, P.G., Robinson, D.M., Quade, J., Ojha, T., Garzione, C.N., Copeland, P., and Upreti, B.N. (2001). – Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics, 20, 487-509.

Gansser, A. (1964). – Geology of the Himalayas, 289 pp: Interscience, New York.

Godin, L., Parrish, R. R., Brown, R. L., & Hodges, K. V. (2001). – Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal: Insight from UPb geochronology and 40Ar/39Ar thermochronology. Tectonics, 20(5), 729-747.

Goscombe, B. E. N., & Hand, M. (2000). – Contrasting P–T paths in the Eastern Himalaya, Nepal: inverted isograds in a paired metamorphic mountain belt. Journal of Petrology, 41(12), 1673-1719.

Grasemann, B., Fritz, H., and Vannay, J.-C. (1999). – Quantitative kinematic flow analysis from the Main Central Thrust Zone (NW-Himalaya, India): implications for a decelerating strain path and the extrusion of orogenic wedges. Journal of Structural Geology, 21, 837-853.

Groppo, C., Lombardo, B., Rolfo, F., & Pertusati, P. (2007). – Clockwise exhumation path of granulitized eclogites from the Ama Drime range (Eastern Himalayas), Journal of Metamorphic Geology, 25(1), 51-75.

Grujic, D., Casey, M., Davidson, C., Hollister, L.S., Kundig, R., Pavlis, T., and Schmid, S. (1996). – Ductile extrusion of the Higher Himalayan Crystalline in Bhutan: evidence from quartz microfabrics. Tectonophysics, 260, 21-43.

Grujic, D., Hollister, L.S., and Parrish, R.R. (2002). – Himalayan metamorphic sequence as an orogenic channel: insight from Bhutan. Earth and Planetary Science Letters, 198, 177-191.

Grujic, D., Warren, C. J., & Wooden, J. L. (2011). – Rapid synconvergent exhumation of Miocene-aged lower orogenic crust in the eastern Himalaya. Lithosphere, 3(5), 346-366.

Guillot, S., and Allemand, P. (2002). – Two-dimensional thermal modelling of the early tectonometamorphic evolution in central Himalaya. Journal of Geodynamics, 34, 77-98.

Hauck, M. L., Nelson, K. D., Brown, L. D., Zhao, W., & Ross, A. R. (1998). – Crustal structure of the Himalayan orogen at 90 east longitude from Project INDEPTH deep reflection profiles. Tectonics, 17(4), 481-500.

Heim, A. and Gansser, A. (1939). – Central Himalaya.

Hetényi, G., Cattin, R., Brunet, F., Bollinger, L., Vergne, J., Nábělek, J. L., & Diament, M. (2007). – Density distribution of the India plate beneath the Tibetan plateau: Geophysical and petrological constraints on the kinetics of lower-crustal eclogitization. Earth and Planetary Science Letters, 264(1), 226-244.

Jamieson, R., Beaumont, C., Nguyen, M., and Grujic, D. (2006). – Provenance of the Greater Himalayan Sequence and associated rocks: predictions of channel flow models. Geological Society, London, Special Publications, 268, 165-182.

Kellett, D. A., Grujic, D., & Erdmann, S. (2009). – Miocene structural reorganization of the South Tibetan detachment, eastern Himalaya: Implications for continental collision. Lithosphere, 1(5), 259-281.

Kali, E., Leloup, P., Arnaud, N., Mahéo, G., Liu, D., Boutonnet, E., Van der Woerd, J., Liu, X., Liu-Zeng, J., and Li, H. (2010). – Exhumation history of the deepest central Himalayan rocks, Ama Drime range: Key pressure-temperature-deformation-time constraints on orogenic models. Tectonics, 29.

Kohn, M. J., Wieland, M. S., Parkinson, C. D., & Upreti, B. N. (2004). – Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal. Earth and Planetary Science Letters, 228(3), 299-310.

Kohn, M. J. (2008). – PTt data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan Sequence. Geological Society of America Bulletin, 120(3-4), 259-273.

Le Fort, P. (1975). – Himalayas: the collided range. Present knowledge of the continental arc. American Journal of Science, 275(1), 1-44.

Le Fort, P. (1986). – Metamorphism and magmatism during the Himalayan collision. Geological Society, London, Special Publications, 19(1), 159-172.

Leloup, P., Mahéo, G., Arnaud, N., Kali, E., Boutonnet, E., Liu, D., Xiaohan, L., and Haibing, L. (2010). – The South Tibet detachment shear zone in the Dinggye area: Time constraints on extrusion models of the Himalayas. Earth and Planetary Science Letters, 292, 1-16.

Leloup, P.H., Liu, X., Mahéo, G., Paquette, J.-L., Arnaud, N., Aubray, A., and Liu, X. (2015). – New constraints on the timing of partial melting and deformation along the Nyalam section (central Himalaya): implications for extrusion models. Geological Society, London, Special Publications, 412, 131-175.

La Roche, R. S., Godin, L., Cottle, J. M., & Kellett, D. A. (2016). – Direct shear fabric dating constrains early Oligocene onset of the South Tibetan detachment in the western Nepal Himalaya. Geology, 44(6), 403-406.

Lombard, A. (1958). – Un itinéraire géologique dans l'Est du Népal (massif du Mont Everest). Mem. Soc. Helv. Sci. Nat. 82, 1-107.

 

Lombardo, B., & Rolfo, F. (2000). – Two contrasting eclogite types in the Himalayas: implications for the Himalayan orogeny. Journal of Geodynamics, 30(1), 37-60.

Mattauer, M. (1986). – Intracontinental subduction, crust-mantle décollement and crustal-stacking wedge in the Himalayas and other collision belts. Geological Society, London, Special Publications, 19(1), 37-50.

McQuarrie, N., Robinson, D., Long, S., Tobgay, T., Grujic, D., Gehrels, G., & Ducea, M. (2008). – Preliminary stratigraphic and structural architecture of Bhutan: Implications for the along strike architecture of the Himalayan system. Earth and Planetary Science Letters, 272(1), 105-117.

Medlicott, H. B., & Blandford, W. T. (1879). – Geology of India. Pt, 1, 379.

Meigs, A. J., Burbank, D. W., & Beck, R. A. (1995). – Middle-late Miocene (> 10 Ma) formation of the Main Boundary thrust in the western Himalaya. Geology, 23(5), 423-426.

Nábělek, J., Hetényi, G., Vergne, J., Sapkota, S., Kafle, B., Jiang, et al. (2009). – Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325(5946), 1371-1374.

Nelson, K. D., Cogan, M., & Wu, C. (1996). – Partially Molten Middle Crust Beneath Southern Tibet: Synthesis of Project INDEPTH Results. Sciences, 274, 6.

Pêcher, A. (1989). – The metamorphism in the central Himalaya. Journal of Metamorphic Geology, 7, 31-41.

Searle, M.P., Law, R.D., Godin, L., Larson, K.P., Streule, M.J., Cottle, J.M. and Jessup, M.J. (2008). – Defining the Himalayan main central thrust in Nepal. Journal of the Geological Society, 165, 523-534.

Schelling, D. (1992). – The tectonostratigraphy and structure of the eastern Nepal Himalaya. Tectonics, 11(5), 925-943.

Unsworth, M. J., Jones, A. G., Wei, W., Marquis, G., Gokarn, S. G., Spratt, J. E. et al. (2005). – Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data. Nature, 438(7064), 78-81.

Vannay, J. C., & Hodges, K. V. (1996). – Tectonometamorphic evolution of the Himalayan metamorphic core between the Annapurna and Dhaulagiri, central Nepal. Journal of Metamorphic Geology, 14(5), 635-656.

Webb, A.A.G., Yin, A., Harrison, T.M., Célérier, J., and Burgess, W.P., (2007). – The leading edge of the Greater Himalayan Crystalline complex revealed in the NW Indian Himalaya: Implications for the evolution of the Himalayan orogen. Geology, 35, 955-958.

Yin, A. (2006). – Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 76(1), 1-131.

Zhao, W., Nelson, K. D., & Team, I. (1993). – First Deep Seismic Reflection Profile in Himalaya/Tibet Plateau: Initial Results of Project IN DEPTH. Nature, 366, 557-559.

 

 

4 > Interactions Climat - Tectonique – Erosion (J. Lavé, C. France-Lanord et A. Galy)

Andermann C, Crave A, Gloaguen R, et al. (2012). – Connecting source and transport: Suspended sediments in the Nepal Himalayas. Earth Planet Sci Lett, 351-352:158-170. doi: 10.1016/j.epsl.2012.06.059

Becker, J. A., Bickle, M. J., Galy, A., & Holland, T. J. B. (2008). – Himalayan metamorphic CO. Earth and Planetary Science Letters, 265(3-4), 616–629. http://doi.org/10.1016/j.epsl.2007.10.046

Beerling, D. J., & Royer, D. L. (2011). – Convergent Cenozoic CO2 history. Nature Geoscience, 4(7), 418-420. http://doi.org/10.1038/ngeo1186.

Beaumont, C., R. A. Jamieson, M. H. Nguyen, and B. Lee (2001). – Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation, Nature, 414, 738-742.

Bernet, M., van der Beek, P., Pik, R., Huyghe, P., Mugnier, J. L., Labrin, E., & Szulc, A. (2006). – Miocene to Recent exhumation of the central Himalaya determined from combined detrital zircon fissiontrack and U/Pb analysis of Siwalik sediments, western Nepal. Basin Research, 18(4), 393-412

Blum, J. D., Gazis, C. A., Jacobson, A. D., & Page Chamberlain, C. (1998). – Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline Series. Geology, 26(5), 411. http://doi.org/10.1130/0091-7613(1998)026<0411:CVSWIT>2.3.CO;2

Boos, W. R., & Kuang, Z. (2011). – Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463(7278), 218-222. http://doi.org/10.1038/nature08707

Burbank, D. W., Blythe, A. E., Putkonen, J., Pratt-Sitaula, Gabet, E., Oskin, M. & Ojha, T. P. (2003). – Decoupling of erosion and precipitation in the Himalayas. Nature, 426(6967), 652-655.

Burbank, D.W., J. Leland, E. Fielding, R.S. Anderson, N. Brozovic, M.R. Reid and C. Duncan (1996). – Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas, Nature, 379.

Burg, J.P., Nievergelt, P., Oberli, F., Seward, D., Davy, P., Maurin, J.-C., Diao, Z., and Meier, M. (1998). – The Namche-Barwa syntaxis: Evidence for exhumation related to compressional crustal folding. Journal of Asian Earth Sciences, 16, 239-252.

Clark, M. K., & Bilham, R. (2008). – Miocene rise of the Shillong Plateau and the beginning of the end for the Eastern Himalaya. Earth and Planetary Science Letters, 269(3), 337-351.

Coutand, I., Whipp, D. M., Grujic, D., Bernet, M., Fellin, M. G., Bookhagen, B., ... & Duncan, C. (2014). – Geometry and kinematics of the Main Himalayan Thrust and Neogene crustal exhumation in the Bhutanese Himalaya derived from inversion of multithermochronologic data. Journal of Geophysical Research: Solid Earth, 119(2), 1446-1481.

Edmond, J. M. (1992). – Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science, 258, 1594-1597.

Evans, M. J., Derry, L. A., & France-Lanord, C. (2008). – Degassing of metamorphic carbon dioxide from the Nepal Himalaya. Geochemistry, Geophysics, Geosystems, 9(4), 1-18. http://doi.org/10.1029/2007GC001796

Fluteau, F., Ramstein, G., & Besse, J. (1999). – Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. Journal of Geophysical Research: Atmospheres (1984–2012), 104(D10), 11995–12018. http://doi.org/10.1029/1999JD900048

France-Lanord, C., & Derry, L. A. (1997). – Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature, 390(6655), 65-67. http://doi.org/10.1038/36324

France-Lanord, C, Spiess, V, Klaus, A, et al. (2016). – Proceedings of the International Ocean Discovery Program Volume 354, 1-12. Retrieved from http://dx.doi.org/10.14379/iodp.proc.354.2016

Gabet, E. J., Burbank, D. W., Pratt-Sitaula, B., Putkonen, J., & Bookhagen, B. (2008). – Modern erosion rates in the High Himalayas of Nepal. Earth and Planetary Science Letters, 267(3), 482-494.

Gaillardet, J., Dupre, B., Louvat, P., & Allegre, C. J. (1999). – Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1-4), 3-30. http://doi.org/10.1016/S0009-2541(99)00031-5

Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H. R., & Palhol, F. (2007). – Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature, 450(7168), 407-410. http://doi.org/10.1038/nature06273

Garzanti, E., Vezzoli, G., Andò, S., Lavé, J., Attal, M., France-Lanord, C., & DeCelles, P. (2007). – Quantifying sand provenance and erosion (Marsyandi River, Nepal Himalaya). Earth and Planetary Science Letters, 258(3), 500-515.

Harris, N., Bickle, M., Chapman, H., Fairchild, I., & Bunbury, J. (1998). – The significance of Himalayan rivers for silicate weathering rates: evidence from the Bhote Kosi tributary. Chemical Geology, 144(3-4), 205-220. http://doi.org/10.1016/s0009-2541(97)00132-0

Koepnick, R. B., Burke, W. H., Denison, R. E., Hetherington, E. A., Nelson, H. F., Otto, J. B., & Waite, L. E. (1985). – Construction of the seawater curve for the cenozoic and cretaceous: Supporting data. Chemical Geology: Isotope Geoscience Section, 58(1-2), 55-81. http://doi.org/10.1016/0168-9622(85)90027-2

Lavé J., and J.P. Avouac (2001). – Fluvial incision and tectonic uplift across the Himalayas of Central Nepal, Journal of Geophysical Research, 106, 26,561-26,592.

Le Fort, P., Jest, C. (1974). – Les sources thermales du Népal : Objets et mondes. Revue Du Musée De l'Homme, 14, 213-218.

Lupker M, Blard P-H, Lavé J, et al. (2012). – 10Be-derived Himalayan denudation rates and sediment budgets in the Ganga basin. Earth Planet Sci Lett. 333-334:146-156.

Lupker, M., Lavé, J., France-Lanord, C., Christl, M., Bourlès, D., Carcaillet, J. & Xiaohan, L. (2017). – 10 Be systematics in the Tsangpo-Brahmaputra catchment: the cosmogenic nuclide legacy of the eastern Himalayan syntaxis. Earth Surface Dynamics, 5(3).

Perrier, F., Richon, P., Byrdina, S., France-Lanord, C., Rajaure, S., Koirala, B. P., et coll. (2009). – A direct evidence for high carbon dioxide and radon-222 discharge in Central Nepal. Earth and Planetary Science, 278(3-4), 198–207. http://doi.org/10.1016/j.epsl.2008.12.008

Quade, J., English, N., & DeCelles, P. G. (2003). – Silicate versus carbonate weathering in the Himalaya: a comparison of the Arun and Seti River watersheds. Chemical Geology, 202(3-4), 275-296. http://doi.org/10.1016/j.chemgeo.2002.05.002

Raymo, M. E., & Ruddiman, W. F. (1992). – Tectonic forcing of late Cenozoic climate. Nature, 359(6391), 117-122. http://doi.org/10.1038/359117a0

Ruddiman, W. F., & Kutzbach, J. E. (1989). – Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American west. Journal of Geophysical Research: Atmospheres (1984–2012), 94(D15), 18409-18427. http://doi.org/10.1029/JD094iD15p18409

Sarin, M. M., & Krishnaswami, S. (1984). – Major ion chemistry of the Ganga–Brahmaputra river systems, India. Nature, 312(5994), 538-541. http://doi.org/10.1038/312538a0

Thiede, R. C., & Ehlers, T. A. (2013). – Large spatial and temporal variations in Himalayan denudation. Earth and Planetary Science Letters, 371, 278-293.

van der Beek, P., Litty, C., Baudin, M., Mercier, J., Robert, X., & Hardwick, E. (2016). – Contrasting tectonically driven exhumation and incision patterns, western versus central Nepal Himalaya. Geology, 44(4), 327-330.

West, A., Galy, A., & Bickle, M. (2005). – Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters, 235(1-2), 211–228. http://doi.org/10.1016/j.epsl.2005.03.020

Zachos, J. (2001). – Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292(5517), 686-693. http://doi.org/10.1126/science.105941g

Zeitler, P. K., Meltzer, A. S., Koons, P. O., Craw, D., Hallet, B., Chamberlain, C. P. & Shroder, J. (2001). – Erosion, Himalayan geodynamics, and the geomorphology of metamorphism. GSA Today, 11(1), 4-9.

 

 

5 > Un séisme de magnitude 9 est-il possible le long de l’arc himalayen ? (R. Cattin, L. Bollinger, Y. Klinger)

Ambraseys N. N. and D. Jackson (2003). – A note on early earthquakes in northern India and southern Tibet. Curr. Sci., 84(4), 570-582.

Bollinger, L., S.N. Sapkota, P. Tapponnier, Y. Klinger, M. Rizza, J. Van Der Woerd, D.R. Tiwari, R. Pandey, A. Bitri and S. Bes de Berc (2014). – Estimating the return times of great Himalayan earthquakes in eastern Nepal: Evidence from the Patu and Bardibas strands of the Main Frontal Thrust. Journal of Geophysical Research: Solid Earth119(9), p.7123-7163.

Duncan, C., J. Masek and E. Fielding (2003). – How steep are the Himalaya? Characteristics and implications of along-strike topographic variations. Geology31(1), p.75-78.

Hetényi, G., R. Cattin, T. Berthet, N. Le Moigne, J. Chophel, S. Lechmann, P. Hammer, D. Drukpa, S.N. Sapkota, S. Gautier and K. Thinley (2016). – Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies. Scientific reports6.

Le Roux-Mallouf R., M. Ferry, J.-F. Ritz, T. Berthet, R. Cattin, and D. Drukpa (2016). – First paleoseismic evidence for great surface-rupturing earthquakes in the Bhutan Himalayas. J. Geophys. Res. Solid Earth, 121, doi:10.1002/2015JB012733.

Le Roux-Mallouf, R., V. Godard, R. Cattin, M. Ferry, J. Gyeltshen, J.F. Ritz, D. Drupka, V. Guillou, M. Arnold, G. Aumaître, D.L. Bourlès and K. Keddadouche (2015). – Evidence for a wide and gently dipping Main Himalayan Thrust in western Bhutan. Geophys. Res. Lett., doi: 10.1002/2015GL063767.

Kumar, S., S. G. Wesnousky, R. Jayangondaperumal, T. Nakata, Y. Kumahar and V. Singh (2010). – Paleoseismological evidence of surface faulting along the northeastern Himalayan front, India: Timing, size, and spatial extent of great earthquakes. J. Geophys. Res. Solid Earth, 115(B12), p. 1-20, doi: 10.1029/2009JB006789.

McQuarrie, N., D. Robinson, S. Long, T. Tobgay, D. Grujic, G. Gehrels and M. Ducea (2008). – Preliminary stratigraphic and structural architecture of Bhutan: Implications for the along strike architecture of the Himalayan system. Earth and Planetary Science Letters272(1), p. 105-117.

Molnar, P. and D. Qidong (1984). – Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia. Journal of Geophysical Research: Solid Earth89(B7), p. 6203-6227.

Mugnier, J.-L., A. Gajurel, P. Huyghe, R. Jayangandaperumal, F. Jouanne, B. Upreti (2013). – Structural interpretation of the great earthquakes of the last millennium in the central Himalaya. Earth Science Reviews, 127, p. 30-47, doi: 10.1016/j.earscirev.2013.09.003.

Robert, X., P. Van Der Beek, J. Braun, C. Perry, J.L. and Mugnier (2011). – Control of detachment geometry on lateral variations in exhumation rates in the Himalaya: Insights from lowtemperature thermochronology and numerical modeling. Journal of Geophysical Research: Solid Earth116(B5).

Sapkota S. N., L. Bollinger, Y. Klinger, P. Tapponnier, Y. Gaudemer and D. Tiwari (2013). – Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nature Geosciences, 6, p. 71-76, doi:10.1038/NGEO1669.

Srivastava, H. N., B. K. Bansal, and Mithila Verma (2013). – Largest earthquake in Himalaya: An appraisal. Journal of the Geological Society of India, 82(1), p. 15-22.

Stevens, V. L., and J. P. Avouac (2015). – Interseismic coupling on the main Himalayan thrust. Geophys. Res. Lett., 42, p. 5828-5837, doi:10.1002/2015GL064845.

Stevens, V. L., and J.-P. Avouac (2016). – Millenary Mw > 9.0 earthquakes required by geodetic strain in the Himalaya. Geophys. Res. Lett., 43, p. 1118-1123, doi: 10.1002/2015GL067336.

Wang, K., and Y. Fialko (2015). – Slip model of the 2015 Mw 7.8 Gorkha (Nepal) earthquake from inversions of ALOS-2 and GPS data. Geophys. Res. Lett., 42, p.74527458, doi: 10.1002/2015GL065201.

Wesnousky, S. G., Y. Kumahara, D. Chamlagain, I. K. Pierce, A. Karki and D. Gautam (2017). – Geological observations on large earthquakes along the Himalayan frontal fault near Kathmandu, Nepal. Earth and Planetary Science Letters, 457, p. 366-375.

 

 

6 > Formation du Plateau du Tibet : rôle de l’épaississement crustal anté-collision Inde-Asie (J. de Sigoyer, S. Guillot, L. Airaghi)

Airaghi L. (2017). – Etude pétro-chronologique de la chaîne des Longmen Shan (Tibet oriental) : héritage géologique et implications pour la géodynamique actuelle. PhD thesis, Université de Grenoble Alpes.

Airaghi, L., Lanari, P., de Sigoyer, J., Guillot, S. (2017a). – Microstructural vs compositional preservation and pseudomorphic replacement of muscoite in deformed metapelites from the Longmen Shan (Sichuan, China). Lithos, 282-283, p. 260-280.

Airaghi, L., de Sigoyer J., Lanari, P., Guillot, S., Vidal, O., Monié, P., Sautter, B. Tan, X. (2017b). – Total exhumation across the Beichuan fault in the Longmen Shan (eastern Tibetan plateau, China) : constraints from petrology and thermobarometry. Journal of Asian Earth Sciences, 140, p. 108-121.

Argand, E. (1924). – La tectonique de l’Asie, Proc. Int. Geol. Cong., 7, p. 71-372.

Billerot, A., Duchene, S., Vanderhaeghe, O., de Sigoyer, J. (2017). – Gneiss domes of the Danba metamorphic complex, Songpan Ganze, eastern Tibet. Journal of Asian Earth Sciences, 140, p. 48-74.

De Celles, P.G., Robinson, D.M., Zandt, G. (2002). – Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan plateau. Tectonics, 21(6), 1062.

De Sigoyer, J., Vanderhaeghe, O., Duchene, S., Billerot, A. (2014). – Generation et emplacement of Triassic granitoids within the Sonpang Ganze accretionary-orogenic wedge in a context of slab retreat accomodated by tear faulting, Eastern Tibetan plateau, China. Journal of Asian Earth Sciences, 88, p. 192-216.

Dewey, J. and Bird J.M. (1970). – Mountain Belts and the New Global Tectonics. Journal of Geophysical Research, 75, p. 2625-2647.

Dirks, P., Wilson, C., Chen, S., Luo, Z., Liu, S. (1994). – Tectonic evolution of the NE margin of the Tibetan Plateau: evidence from the central Longmen Mountains, Sichuan Province, China. Journal of Southeast Asian Earth Sciences, 9, p. 181-192.

Guillot, S., Replumaz, A. (2013). – Importance of the continental subductions for the growth of the Tibetan plateau. Bulletin de la societé Géologique de France, 184(3), p. 199-223.

Hubbard, J., Shaw, J., Klinger, Y. (2010). – Structural setting of the 2008 Mw 7.9 Wenchuan, China, earthquake. Bulletin of the Seismological Society of America, letters, 100(5B), p. 2713-2735.

Jolivet, M. (2017). – Mesozoic tectonic and topographic evolution of Central Asia and Tibet: a preliminary synthesis. Geological Evolution of Central Asian Basins and the Western Tien Shan Range. Geological Society, London, Special Publications, 427, p. 19-55.

Molnar, P., England, P., Martinod, J. (1993). – Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 31(4), p. 357-396.

Pubellier M. & al. (2008). – Structural Map of Eastern Eurasia, Commission for the Geological Map of the World, 1:12.500.000 scale.

Pullen, A., Kapp, P., Gehrels, G., Vervoort, J., Ding, L. (2008). – Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys ocean. Geology, 36, p. 351-354.

Replumaz, A., Negredo, A., Guillot, S., van der Beek, P., Villaseñor, A. (2010). –Crustal mass budget and recycling during the India/Asia collision. Tectonophysics, 492, p. 99-107.

Robert, A., Zhu, J., Vergne, J., Cattin, R., Chan, L., Wittlinger, G., Herquel, G., de Sigoyer, J., Pubellier, M. (2010a). – Crustal structure in the area of the 2008 Sichuan earthquake from seismologic and gravimetric data. Tectonophysics, 491, p. 205-210.

Robert, A., Pubellier, M., de Sigoyer, J., Vergne, J., Lahfid, A., Cattin, R., Findling, N., Zhu, J. (2010b). – Structural and thermal characters of the Longmen Shan (Sichuan, China). Tectonophysics, 491, p. 165-173.

Roger, F., Malavieille, J., Leloup, P.H., Calassou, S. Xu, Z. (2004). – Timing of granite emplacement and cooling in the Sonpan-Garzê Fold Belt (eastern Tibetan Plateau) with tectonic implications. Journal of Asian Earth Sciences, 22, p. 465-481.

Roger, F., Jolivet, M., Cattin, R., Malavieille, J. (2011). – Mesozoic-Cenozoic tectonothermal evolution of the eastern part of the Tibetan plateau (Songpan-Garze, Longmen Shan area): insights from thermochronological data and simple thermal modelling. In: Gloaguen, R., Ratschbacher, L. (Eds.), “Growth and Collapse of the Tibetan Plateau”. Geological Society, Special Publications, 353, p. 9-25.

Stampfli, G.M. et Borel, G.D. (2002). – A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196, p. 17-33.

Tapponnier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., Jingsui, Y. (2001). – Oblique stepwise rise and growth of the Tibetan plateau. Science, 294, p. 1671.