360 F 30048671 zo6yATKHPV2qPQxEoqfbtDsRVpj9UNlK

facebooklinkedintwitter youtube
  • Le fonds


Nouvel éclairage sur les diamants roses d’Argyle (Australie)


Pour en savoir plus :

Géochronique n°77, 2001, Dossier Diamant, p. 11-27.

Olierook K.H. et al. (2023). – Emplacement of the Argyle diamond deposit into an ancient rift zone triggered by supercontinent breakup. Nature Communications (2023)14:5274, 10 p.

Rayner M.J. et al. (2018). – New insights into volcanic processes from deep mining of the southern diatreme within the lamproite pipe, Western Australia. Mineralogy and Petrology, 112, p.351-363.

Sciences et Avenir, 20 septembre 2023 – Découverte du secret de la rareté des diamants roses, 5 p.

Shigley J.E.,Chapman J. et Ellison R.E. (2001). – Discovery and mining of the Argyle diamond deposit, Australia. Gems & Gemology, Spring 2001, p. 26-41.

Wikipedia – Argyle diamond mine, 8 p.

Wikipedia – Columbia (supercontinent), 3 p.



Approvisionnement en gallium et germanium, l’Europe entre le marteau et l’enclume


Pour en savoir plus :

European Commission, Study on the EU’s list of Critical Raw Materials (2020). – Factsheets on Critical Raw Materials.

Christmann P. et al. (2011). – Panorama du marché 2011 du germanium, Rapport BRGM/RP-60584-FR.

Christmann P. et al. (2011). – Panorama 2010 du marché du gallium, Rapport BRGM/RP-60582-FR.

Lagny Ph. (2014). – Le gallium, un métal « critique ». Géochronique, n°131, p. 28-31.





Pourquoi s’intéresser aux lacs ?

Coordinateurs du dossier : Mathieu Schuster1 et Alexis Nutz2

1Institut Terre et Environnement de Strasbourg, UMR 7063, CNRS, Université de Strasbourg, ENGEES, Strasbourg

2CEREGE, Aix-Marseille Université, CNRS, IRD, INRAE, Aix-en-Provence


Cohen A.S. (2003). – Paleolimnology: The history and evolution of lake systems. Oxford University Press, New York, 522 p.

Forel F.-A. (1892, 1895, 1904). – Le Léman – Monographie Limnologique. Tome I (543 p.), Tome II (651 p.) Tome III (715 p.), Editions Rouge, Lausanne.

Gilbert G.K. (1885) – The topographic features of lake shores. U.S. Geol. Surv., Fifth annual report, 75-130.

Gilbert G.K. (1890). – Lake Bonneville. Mononographs of the U.S. Geological Survey, 1.

Messager M.L. et al. (2016). – Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 doi: 10.1038/ncomms13603 

Russell I.C. (1885). – Geological history of Lake Lahontan, a Quaternary lake in northwestern Nevada. Monographs of the U.S. Geological Survey, 11.

Tiercelin J.-J. (1991). – Natural resources in the lacustrine facies of the Cenozoic rift basins of East Africa. In: Anadon P., Cabrera L., Kelts K. (eds) Lacustrine facies analysis. Spec. Pub. International Association of Sedimentologists, 13, 3-37.

Verpoorter C. et al. (2014). – A global inventory of lakes based on high-resolution satellite imagery, Geophys. Res. Lett., 41, 6396-6402, doi:10.1002/2014GL060641. 



1 > Des lacs aux systèmes sédimentaires lacustres


Mathieu Schuster1 et Alexis Nutz2

1Institut Terre et Environnement de Strasbourg, UMR 7063, CNRS, Université de Strasbourg, ENGEES, Strasbourg

2CEREGE, Aix-Marseille Université, CNRS, IRD, INRAE, Aix-en-Provence


Bohacs K.M., Carroll A.R., Neal J.E. & Mankiewicz P.J. (2000). – Lake-basin type, source potential, and hydrocarbon character: an integrated-sequence-stratigraphic-geochemical framework. In: Gierlowski-Kordesch E.H. & R Kelts R. (eds), Lake basins through space and time. American Association of Petroleum Geologists Studies in Geology, 46, 3-34.

Carroll A.R. & Bohacs K.M. (1999). – Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls. Geology, 27, 99-102.

Clemmey H. (1978). – A proterozoic lacustrine interlude from the Zambian Copperbelt. In: Tucker ME and Matter A (eds), Modern and Ancient Lake Sediments, Blackwell scientific publications, Oxford, 259-278.

Håkanson L. (1982). – Bottom dynamics in lakes. Hydrobiologia, 91, 9-22.

Herdendorf CE. (1982). – Large lakes of the world. J. Great Lakes Res., 8, 379-412.

Kelts K. (1988). – Environments of deposition of lacustrine petroleum source rocks: an introduction. In: Fleet A.J., Kelts K. & Talbot M.R. (eds), Lacustrine Petroleum Source Rocks. Geological Society Special Publication, 40, 3-26.

Nutz A., Schuster M., Barboni D., Gassier G., Van Bocxlaer B., Robin C., Ragon T., Ghienne J.-F., Rubino J.-L. (2020). – Plio-Pleistocene sedimentation in West Turkana (Turkana Depression, Kenya, East African Rift System): Paleolake fluctuations, paleolandscapes and controlling factors. Earth-Science Reviews, 211, 103415, https://doi.org/10.1016/j.earscirev.2020.103415

Nutz A., Schuster M., Boes X., Rubino J.-L. (2017). – Orbitally-driven evolution of Lake Turkana (Turkana Depression, Kenya, EARS) between 1.95 and 1.72 Ma: A sequence stratigraphy perspective. Journal of African Earth Sciences, 125, 230-243.

Nutz A. & Schuster M. (2016). – Stepwise drying of Lake Turkana at the end of the African Humid Period: A forced regression modulated by solar activity variations? Solid Earth, 7, 1609-1618.

Smith M.E. & Scott J.J. (2015). – Trip 2—Tectonics, Climate, and Paleogeomorphology of the Green River Formation. In: Rosen M.R. (compiler), Sixth International Limnogeology Congress—Field Trip Guidebook, Reno, Nevada, June 15-19, 2015. U.S. Geological Survey Open-File Report 2015–1108, p. 31-60.



2 > La formation de carbonates modernes dans les lacs


Emmanuelle Vennin et Pierre Boussagol

Biogéosciences, UMR 6282 CNRS, Univ. Bourgogne Franche-Comté, 21000 Dijon




Bougeault, C., Durlet, C., Vennin, E., Muller, E., Ader, M., Ghaleb, B., Gerard, E., Virgone, A. & Gaucher, E. C. (2020). – Variability of carbonate isotope signatures in a hydrothermally influenced system: insights from the Pastos Grandes Caldera (Bolivia). Minerals, 10(11), 989.

Boussagol, P., Vennin, E., Bouton, A., Roche, A., Thomazo, C., Buoncristiani, J-F., Monna, F., Musset, O. & Visscher, P.T (2023). – Quaternary lacustrine carbonate deposits of the Great Basin, USA: Impact of climate, tectonics and substrat. Sedimentology, 70, 970-1008.

Bouton, A., Vennin, E., Boulle, J., Pace, A., Bourillot, R., Thomazo, C., Brayard, A., Désaubliaux, G., Goslar, T., Yokoyama, Y., Dupraz, C., & Visscher, P. T. (2016). – Linking the distribution of microbial deposits from the Great Salt Lake (Utah, USA) to tectonic and climatic processes. Biogeosciences, 13, 5511-5526.

Bouton, A., Vennin, E., AmiotteSuchet, P., Thomazo, C., Sizun, J. P., Virgone, A., Gaucher, E.C. & Visscher, P. T. (2020). – Prediction of the calcium carbonate budget in a sedimentary basin: A “sourcetosink” approach applied to Great Salt Lake, Utah, USA. Basin Research, 32(5), 1005-1034.

Burne, R. V., & Moore, L. S. (1987). – Microbialites: organosedimentary deposits of benthic microbial communities. Palaios, 2, 241-254.

Dupraz, C., Reid, R.P., Braissant, O., Decho, A.W., Norman, R.S. & Visscher, P.T. (2009). – Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev., 9, 141-162.

Eisses, A.K., Kell, A., Kent, G.M., Driscoll, N.W., Baskin, R.L., Smith, K.D., Karlin, R.E., Louie, J.N., & Pullamanappallil, S.K. (2015). – New constraints on fault architecture, slip rates, and strain partitioning beneath Pyramid Lake. Geosphere, 11, 683-704.

Escoffier, N., Perolo, P., Lambert, T., Rüegg, J., Odermatt, D., Adatte, T., Vennemann, T. & Perga, M. E. (2022). – Whiting events in a large perialpine lake: Evidence of a catchmentscale process. Journal of Geophysical Research: Biogeosciences, 127(4), e2022JG006823.

Freytet, P., & Verrecchia, E. P. (2002). – Lacustrine and palustrine carbonate petrography: an overview. Journal of Paleolimnology, 27, 221-237.

Gérard, E., De Goeyse, S., Hugoni, M., Agogué, H., Richard, L., Milesi, V., Guyot, F., Lecourt, L., Borensztajn, S., Joseph, M-B., Leclerc, T., Sarazin, G., Jézéquel D., Leboulanger, C. & Ader, M. (2018). – Key role of alphaproteobacteria and cyanobacteria in the formation of stromatolites of Lake Dziani Dzaha (Mayotte, Western Indian Ocean). Frontiers in Microbiology, 9, 796.

Gierlowski-Kordesch, E.H. (2010). – Lacustrine carbonates. Developments in sedimentology, 61, 1-101.

Ginsburg, R. N., & Planavsky, N. J. (2008). – Diversity of Bahamian microbialite substrates. In: Diley Y., Furnes H, Muehlenbachs K, (eds), Links Between Geological Processes, Microbial Activities & Evolution of Life: Microbes and Geology, Dordrecht: Springer Netherlands, p. 177-195.

Havas, R., Thomazo, C., Iniesto, M., Jézéquel, D., Moreira, D., Tavera, R., Caumartin, J., Muller, E., López-García, P., & Benzerara, K. (2023). – Biogeochemical processes captured by carbon isotopes in redox-stratified water columns: a comparative study of four modern stratified lakes along an alkalinity gradient. Biogeosciences, 20, 2347-2367.

Iniesto, M., Moreira, D., Benzerara, K., Muller, E., Bertolino, P., Tavera, R., & LópezGarcía, P. (2021). – Rapid formation of mature microbialites in Lake Alchichica, Mexico. Environmental Microbiology Reports, 13(5), 600-605.

Milesi, V. P., Jézéquel, D., Debure, M., Cadeau, P., Guyot, F., Sarazin, G., Claret, F.,Vennin, E.Chaduteau, C.,Virgone, A., Gaucher, E. C. & Ader, M. (2019). – Formation of magnesiumsmectite during lacustrine carbonates early diagenesis: Study case of the volcanic crater lake Dziani Dzaha (Mayotte–Indian Ocean). Sedimentology, 66(3), 983-1001.

Muller, E., Gaucher, E.C., Durlet, C., Moquet, J-S., Moreira, V., Rouchon, P., Louvat, G., Bardoux, S., Noirez, C., Bougeault, C., Vennin, E., Gérard, E., Chavez, M., Virgone, A., & Ader, M. (2020). – The origin of continental carbonates in Andean salars: A multi-tracer geochemical approach in Laguna Pastos Grandes (Bolivia). Geochim. Cosmochim. Acta, 279, 220-237.

Pace, A., Bourillot, R., Bouton, A., Vennin, E., Galaup, S., Bundeleva, I. & Visscher, P. T. (2016). – Microbial and diagenetic steps leading to the mineralisation of Great Salt Lake microbialites. Scientific Reports, 6(1), 31495.

Pace, A., Bourillot, R., Bouton, A., Vennin, E., Galaup, S., Bundeleva, I., Patrier, P., Dupraz, C., Thomazo, C., Sansjofre, P., Yokoyama, Y., Franceschi, M., Anguy, Y., Pigot, L., Virgone, A., & Visscher, P. T. (2016). – Microbial and diagenetic steps leading to the mineralisation of Great Salt Lake microbialites. (Nature) Scientific Report, 6, 31495, 1-12.

Peng, F., & Effler, S. W. (2011). – Characterizations of the light-scattering attributes of mineral particles in Lake Ontario and the effects of whiting. Journal of Great Lakes Research, 37(4), 672-682.

Platt, N. H., & Wright, V. P. (1991). – Lacustrine carbonates: facies models, facies distributions and hydrocarbon aspects. In: Anadón P., L. Cabrera, and K. Kelts, (eds), Lacustrine facies analysis. International Association of Sedimentologists Special Publication, 13, 57-74.

Roche, A., Vennin, E., Bundeleva, I., Bouton, A., Payandi-Rolland, D., Amiotte-Suchet, P. & Visscher, P. T. (2019). – The role of the substrate on the mineralization potential of microbial mats in a modern freshwater river (Paris Basin, France). Minerals, 9(6), 359.

Stanton, C., Barnes, B. D., Kump, L. R., & Cosmidis, J. (2023). – A reexamination of the mechanism of whiting events: A new role for diatoms in Fayetteville Green Lake (New York, USA). Geobiology, 21(2), 210-228.

Tarhan, L. G., Planavsky, N. J., Laumer, C. E., Stolz, J. F., & Reid, R. P. (2013). – Microbial mat controls on infaunal abundance and diversity in modern marine microbialites. Geobiology, 11(5), 485-497.

Vennin E., Bouton A., Bourillot R., Pace A., Roche A., Brayard A., Thomazo C., Virgone A., Gaucher E.C., Desaubliaux G. & Visscher P.T. (2019). – The lacustrine microbial carbonate factory of the successive Lake Bonneville and Great Salt Lake, Utah, USA. Sedimentology, 66(1), 165-204.

Vennin, E. & Boussagol, P. (2023). – Le rôle des communautés microbiennes sur la capture et le stockage de CO2 dans les rivières de Bourgogne-Franche-Comté. Bourgogne-Franche-Comté Nature, 37/38-2023, 237-251.

Visscher, P.T., Gallagher, K.L., Bouton, A., Vennin, E., Thomazo, C., White III, R.A. & Burns, B.P. (2022). – Treatise Online no.163: Part B, Volume 1, Chapter 3: Microbial mats. Treatise Online.

Wright, V. P. (2012). – Lacustrine carbonates in rift settings: the interaction of volcanic and microbial processes on carbonate deposition. Geological Society, London, Special Publications, 370(1), 39-47.

Wright, V. P. (2022). – The mantle, CO2 and the giant Aptian chemogenic lacustrine carbonate factory of the South Atlantic: Some carbonates are made, not born. Sedimentology, 69(1), 47-73.

Zeyen, N., Daval, D., Lopez-Garcia, P., Moreira, D., Gaillardet, J., & Benzerara, K. (2017). – Geochemical conditions allowing the formation of modern lacustrine microbialites. Procedia Earth and Planetary Science, 17, 380-383.



5 > Reconstituer les saisons du passé grâce aux sédiments varvés


Cécile L. Blanchet

Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Allemagne


Brauer, A., Dulski, P., Mangili, C., Mingram, J., Liu, J., (2009). – The potential of varves in high-resolution paleolimnological studies. Pages news, 17, 96-98.

Obreht, I., De Vleeschouwer, D., Wörmer, L., Kucera, M., Varma, D., Prange, M., Laepple, T., Wendt, J., Nandini-Weiss, S. D., Schulz, H., and Hinrichs, K.-U. (2022). – Last Interglacial decadal sea surface temperature variability in the eastern Mediterranean. Nat. Geosci., 15, 812-817. https://doi.org/10.1038/s41561-022-01016-y, 2022.

Ramisch, A., Brauser, A., Dorn, M., Blanchet, C., Brademann, B., Köppl, M., Mingram, J., Neugebauer, I., Nowaczyk, N., Ott, F., Pinkerneil, S., Plessen, B., Schwab, M. J., Tjallingii, R., and Brauer, A. (2020). – VARDA (VARved sediments DAtabase) – providing and connecting proxy data from annually laminated lake sediments. Earth System Science Data, 12, 2311-2332. https://doi.org/10.5194/essd-12-2311-2020

Zolitschka, B., Francus, P., Ojala, A.E.K., and Schimmelmann, A. (2015). – Varves in lake sediments – a review. Quaternary Science Reviews, 117, 1-41. https://doi.org/10.1016/j.quascirev.2015.03.019


Ressources :

VARDA (Varved Sediments Database) : https://varve.gfz-potsdam.de/

PAGES Varve Working Group : https://pastglobalchanges.org/science/end-aff/varves-wg/intro



6 > Sédimentation détritique profonde dans les lacs : chenaux-levées de pente (Trias, bassin d’Ordos, Chine)


Guilherme Bozetti

Université de Strasbourg, CNRS, ENGEES, Institut Terre et Environnement de Strasbourg, UMR 7063, Strasbourg


Bozetti, G., Li, X., Yang, Z., Liu, H., Huang, J., Li, Z. and Xu, J., (2023). – New insights into deep-lacustrine architectural elements: Examples from the upper Triassic Yanchang Formation, Ordos basin. Journal of Asian Earth Sciences, 241, p.105431.

Cronin, B. T., (2018). – Lithofabric classification and distribution of coarse-grained deepwater clastic depositional systems. In: Turner C.C. and Cronin B.T. (eds), Rift-related coarse-grained submarine fan reservoirs; the Brae Play, South Viking Graben, North Sea. AAPG Memoir, 115, 39-96.

Deng, X., Fu, J., Yao, J., Pang, J., Sun, B., (2011). – Sedimentary facies of the middle – upper Triassic Yanchang Formation in Ordos Basin and breakthrough in petroleum exploration. J. Palaeogeogr., 13, 443-455 (in Chinese with English abstract).

Kane, I.A., Kneller, B.C., Dykstra, M., Kassem, A., McCaffrey, W.D., (2007). – Anatomy of a submarine channel–levee: an example from Upper Cretaceous slope sediments, Rosario Formation, Baja California. Mexico. Marine and Petroleum Geology, 24 (6-9), 540-563.

Kneller, B., Bozetti, G., Callow, R., Dykstra, M., Hansen, L., Kane, I., Li, P., McArthur, A., Catharina, A.S., Dos Santos, T., Thompson, P., (2020). – Architecture, process, andenvironmental diversity in a late Cretaceous slope channel system. J. Sediment. Res., 90, 1-26.

Li, X., Fu, J., Chen, Q., Liu, X., Liu, H., Guo, Y., Wanyan, R., Liao, J., Wei, L., Huang, J., (2011b). – The Concept of Sandy Debris Flow and Its Application in the Yanchang Formation Deep Water Sedimentation of the Ordos Basin. Advances. Earth Sci., 26 (3), 286-294.

Li, X., Yang, Z., Wang, J., Liu, H., Chen, Q., Wanyan, R., Liao, J., Li, Z., (2016). – Mud-coated intraclasts: a criterion for recognizing sandy mass-transport deposits–deep-lacustrine massive sandstone of the Upper Triassic Yanchang Formation, Ordos Basin, Central China. J. Asian Earth Sci., 129, 98-116.

Mayall, M. and Stewart, I., (2000). – The architecture of turbidite slope channels. In: Global deep-water reservoirs: Gulf Coast Section SEPM Foundation 20th Annual Bob F., Perkins Research Conference, 578-586.

McHargue, T., Pyrcz, M.J., Sullivan, M.D., Clark, J.D., Fildani, A., Romans, B.W., Covault, J.A., Levy, M., Posamentier, H.W., Drinkwater, N.J., (2011). – Architecture of turbidite channel systems on the continental slope: patterns and predictions. Mar. Pet. Geol., 28, 728-743.

Mutti, E., Normark, W.R., (1987). – Comparing examples of modern and ancient turbidite systems: problems and concepts. In: Marine Clastic Sedimentology. Springer, Dordrecht, p. 1-38.

Mutti, E., Normark, W.R., (1991). – An integrated approach to the study of turbidite systems. In: Weimar, P., Link, M.H. (eds), Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems. Frontiers in Sedimentary Geology, Springer, New York, NY, p. 75-106.

Pan, S., Liu, H., Zavala, C., Liu, C., Liang, S., Zhang, Q., Bai, Z., (2017). – Sublacustrine hyperpycnal channel-fan system in a large depression basin: A case study of Nen 1 Member, Cretaceous Nenjiang Formation in the Songliao Basin. NE China. Petroleum Exploration and Development, 44, 911-922.

Peakall, J., McCaffrey, B., Kneller, B., (2000). – A process model for the evolution, morphology, and architecture of sinuous submarine channels. Journal of Sedimentary Research, 70(3), 434-448.

Stevenson, C.J., Jackson, C.A.L., Hodgson, D.M., Hubbard, S.M., Eggenhuisen, J.T., (2015). – Deep-Water Sediment Bypass. J. Sediment. Res., 85(9), 1058-1081.

Wang, J., Li, X., Liu, H., Deng, X., Wanyan, R., (2017). – Depocenter migration of the Ordos Basin in the late Triassic and its controls on shale distribution. Interpretation, 5(2), SF81-SF98.

Xian, B., Wang, J., Gong, C., Yin, Y., Chao, C., Liu, J., Zhang, G., Yan, Q., (2018). – Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the south Ordos Basin, central China. Sed. Geol., 368, 68-82.

Yang, H., Deng, X., (2013). – Deposition of Yanchang Formation deep-water sandstone under the control of tectonic events in the Ordos Basin. Pet. Explor. Dev., 40(5), 549-557.

Yang, R., van Loon, A.T., Yin, W., Fan, A., Han, Z., (2016). – Soft-sediment deformation structures in cores from lacustrine slurry deposits of the Late Triassic Yanchang Fm. (central China). Geologos, 22(3), 201-211.

Zhang, L.F. and Dong, D.Z., (2020). – Thickening-upward cycles in deep-marine and deep-lacustrine turbidite lobes: Examples from the Clare Basin and the Ordos Basin. Journal of Palaeogeography, 9, 1-16.

Zou, C., Wang, L., Li, Y., Tao, S., Hou, L., (2012). – Deep-lacustrine transformation of sandy debrites into turbidites, Upper Triassic, Central China. Sed. Geol., 265, 143-155.



7 > Hydrodynamique sédimentaire forcée par le vent dans les lacs


Mathieu Schuster1, Alexis Nutz2, Florin Zainescu2, Joep Storms3, Helena van der Vegt4,
Jan-Hendrik May5, Frédéric Bouchette6, Jean-François Ghienne1

1Institut Terre et Environnement de Strasbourg, CNRS, Université de Strasbourg

2CEREGE, Aix-Marseille Université, CNRS, IRD, Collège de France, INRAE

3Delft University of Technology, Delft, Pays-Bas

4Deltares, Delft, Pays-Bas

5University of Melbourne, School of Geography, Earth and Atmospheric Sciences, Australie

6Geosciences-M, CNRS, Université de Montpellier


Bouchette F., Schuster M., Ghienne J.F., Denamiel C., Roquin C., Moussa A., Duringer P. (2010). – Hydrodynamics in the Holocene Lake Mega-Chad. Quaternary Research, 73, 226-236.

Ghienne J.F., Schuster M., Bernard A., Duringer P., Brunet M. (2002). – The Holocene giant Lake Chad revealed by Digital Elevation Models. Quaternary International, 87, 81-85.

May J.H., May S.M., Marx S.K., Cohen T.J., Schuster M., Sims A. (2022). – Towards understanding desert shorelines - coastal landforms and dynamics around ephemeral Lake Eyre North, South Australia. Transactions of the Royal Society of South Australia, 146(1), 59-89. https://doi.org/10.1080/03721426.2022.2050506

Mologni C., Bruxelles L., Schuster M., Davtian G., Ménard C., Orange F., Doubre C., Cauliez J., Taezaz H.B., Revel M., Khalidi M. (2021). – Holocene East African monsoonal variations recorded in wave-dominated clastic paleo-shorelines of Lake Abhe, Central Afar region (Ethiopia & Djibouti). Geomorphology, 391. https://doi.org/10.1016/j.geomorph.2021.107896.

Nutz A., Ghienne J.F., Schuster M., Certain R., Robin N., Roquin C., Raynal O., Bouchette F., Duringer P., Cousineau P. (2014). – Seismic-stratigraphic record of a deglaciation sequence: from the marine Laflamme Gulf to the Lake Saint-Jean (late Quaternary, Québec, Canada). Boreas, 43, 309-329.

Nutz A., Schuster M., Ghienne J.F., Roquin C., Hay M., Rétif F., Certain R., Robin N., Cousineau P., Bouchette F. (2015). – Wind-driven bottom currents and related sedimentary bodies in the Lake Saint-Jean (Québec, Canada). Bulletin of the Geological Society of America, 127, 1194-1208.

Nutz A. & Schuster M. (2016). – Stepwise drying of Lake Turkana at the end of the African Humid Period: A forced regression modulated by solar activity variations? Solid Earth, 7, 1609-1618.

Nutz A., Schuster M., Boes X., Rubino J.L. (2017). – Orbitally-driven evolution of Lake Turkana (Turkana Depression, Kenya, EARS) between 1.95 and 1.72 Ma: A sequence stratigraphy perspective. Journal of African Earth Sciences, 125, 230-243.

Nutz A., Schuster M., Ghienne J.F., Roquin C., Bouchette F. (2018). – Wind-driven waterbodies: a new category of lake within an alternative sedimentologically-based lake classification. Journal of Paleolimnology, 59, 189-199.

Nutz A., Schuster M., Barboni D., Gassier G., Van Bocxlaer B., Robin C., Ragon T., Ghienne J.F., Rubino J.L. (2020). – Plio-Pleistocene sedimentation in West Turkana (Turkana Depression, Kenya, East African Rift System): Paleolake fluctuations, paleolandscapes and controlling factors. Earth-Science Reviews, 211, https://doi.org/10.1016/j.earscirev.2020.103415.

Schuster M., Duringer P., Ghienne J.F., Vignaud P., Beauvilain A., Mackaye H.T., Brunet M. (2003). – Coastal conglomerate around the Hadjer el Khamis inselbergs (western Chad, central Africa): new evidence for Lake Mega-Chad episodes. Earth Surface Processes and Landforms, 28, 1059-1069.

Schuster M., Roquin C., Duringer P., Brunet M., Fontugne M., Mackaye H.T., Vignaud P., Ghienne J.F. (2005). – Highlighting Holocene Lake Mega-Chad paleoshorelines from space. Quaternary Science Reviews, 24, 1821-1827.

Schuster M., Roquin C., Durand A., Moussa A., Ghienne J.F., Allenbach B., Duringer P., Bouchette F. (2014). – Shorelines of the Holocene Megalake Chad (Africa, Sahara) investigated with very high resolution satellite imagery (Pléiades) : example of the Goz Kerki paleo-spit. Revue Française de Photogrammétrie et Télédétection, 208, 63-68.

Tiercelin J.J., Schuster M., Roche H., Brugal J.P., Thuo P., Prat S., Harmand S., Davtian G., Barrat J.A., Bohn M. (2010). – New considerations on the stratigraphy and environmental context of the oldest (2.34 Myr) Lokalalei archaeological site complex of the Nachukui Formation, West Turkana, northern Kenya Rift. Journal of African Earth Sciences, 58, 157-184.

Zăinescu F., van der Vegt H., Storms J.A.E., Nutz A., Bozetti G., May J.H., Cohen S., Bouchette F., May S.M., Schuster M. (2023). – The role of wind-wave related processes in redistributing river-derived terrigenous sediments in Lake Turkana: A modelling study. Journal of Great Lakes Research, 49, 368-386. https://doi.org/10.1016/j.jglr.2022.12.013.


Site web : https://oss.deltares.nl/web/delft3d



8 > Les traces fossiles dans les bassins lacustres

Outils pour la paléoécologie, la stratigraphie et l’analyse de bassins


Jenni Scott

Earth and Environmental Sciences, Mount Royal University, Calgary, Canada - jescott@mtroyal.ca


Bohacs, K.M., Hasiotis, S.T., and Demko, T.M., (2007b). – Continental ichnofossils of the Green River and Wasatch Formations, Eocene, Wyoming: a preliminary survey, proposed relation to lake-basin type, and application to integrated paleo-environmental interpretation. The Mountain Geologist, 44, 79-108.

Buatois, L.A., and Mángano, M.G., (2009). – Applications of ichnology in lacustrine sequence stratigraphy: potential and limitations. Palaeogeography, Palaeoclimatology, Palaeoecology, 272, 127-142.

Carroll A.R. & Bohacs K.M. (1999). – Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls. Geology, 27, 99-102.

Scott, J.J., and Smith, M.E., (2015). – Trace fossils of the Eocene Green River lake basins, Wyoming, Utah, and Colorado. In: Smith, M.E., and Carroll, A.R. (eds), Stratigraphy and Paleolimnology of the Green River Formation. Springer, 313-350.

Scott, J.J., Renaut, R.W., and Owen, R.B., (2010). – Taphonomic controls on animal tracks at saline, alkaline Lake Bogoria, Kenya Rift Valley: Impact of salt efflorescence and clay mineralogy. Journal of Sedimentary Research, 80, 639-665.

Scott, J.J., Buatois, L.A., and Mángano, M.G., (2012a). – Lacustrine environments. In: Knaust, D., and Bromley, R.G. (eds), Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology, 64, 379-417.

Scott, J.J., Renaut, R.W., Owen, R.B., (2012b). – Impacts of flamingos on saline lake margin and shallow lacustrine sediments in the Kenya Rift Valley. Sedimentary Geology, 277-278, 32-51.

Scott, J.J., Renaut, R.W., Buatois, L.A., and Owen, R.B., (2009). – Biogenic structures in exhumed surfaces around saline lakes: An example from Lake Bogoria, Kenya Rift Valley. Palaeogeography, Palaeoclimatology, Palaeoecology, 272, 176-198.



9 > Les mollusques lacustres

Un système d’étude émergeant en biologie évolutive et en reconstruction paléo-environnementale


Bert Van Bocxlaer

CNRS, Univ. Lille, UMR 8198 – Evolution, Ecologie, Paléontologie, 59000 Lille


Dudgeon, D., A. H. Arthington, M. O. Gessner, Z.-I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A.-H. Prieur-Richard, D. Soto, M. L. J. Stiassny, C. A. Sullivan (2006). – Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81, 163-182.

Salzburger, W., B. Van Bocxlaer, A. S. Cohen. (2014). – Ecology and evolution of the African Great Lakes and their faunas. Annual Review of Ecology, Evolution, and Systematics, 45, 519-545.

Strong, E. E., O. Gargominy, W. F. Ponder, P. Bouchet. (2008). – Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Hydrobiologia, 595, 149-166.

Van Bocxlaer, B., W. Salenbien, N. Praet, J. Verniers. (2012). – Stratigraphy and paleoenvironments of the early to middle Holocene Chipalamawamba Beds (Malawi Basin, Africa). Biogeosciences, 9, 4497-4512.



10 > Les diatomées, le joyau du phytoplancton planétaire


Florence Sylvestre

CEREGE, Europôle Méditerranéen de l’Arbois, Aix-en-Provence

Actuellement, en affectation à l’Université de N’Djamena, Campus de Farcha, N’Djamena, Tchad


Amaral P.G.C., Vincens A., Guiot J., Buchet G., Deschamps P., Doumnang J. C., Sylvestre F. (2013). – Palynological evidence for gradual vegetation and climate changes during the African humid period termination at 13 degrees N from a Mega-Lake Chad sedimentary sequence. Climate of the Past, 9(1), 223-241.

Battarbee R.W., Jones V.J., Cameron N.G., Bennion H., Carvalho L., Juggins S. (2001). – Diatoms. In: Smol J.P. & Birks H.J.B. (eds), Tracking Environmental Change using Lake sediments, vol. 3: Terrestrial, Algal, and siliceous indicators, 155-202.

Germain, H. (1981). – Flore des diatomées : Diatomophycées eaux douces et saumâtres du massif Armoricain et des contrées voisines d’Europe occidentale. Ed. Boubée, 444 p.

Ghienne J.F., Schuster M., Bernard A., Duringer P., Brunet M. (2002). – The Holocene giant Lake Chad revealed by digital elevation models. Quaternary International, 87, 81-85/

Girard V., Saint Martin S., Buffetaut E., Saint Martin J.P., Néraudeau D., Peyrot D., Roghi G., Ragazzi E., Suteethorn V. (2020). – Thai amber: insights into early diatom history? BSGF Earth Science Bulletin, 191, 23, 1-13.

Goldman, J. C. (1993). – Potential role of large oceanic diatoms in new primary production. Deep Sea Research Part I: Oceanographic Research Papers, 40(1), 159-168.

Leblanc, K., Quéguiner, B., Diaz, F., Cornet, V., Michel-Rodriguez, M., Durrieu de Madron, X., Bowler, C., Malviya, S., Thyssen, M., Grégori, G., Rembauville, M., Grosso, O., Poulain, J., de Vargas, C., Pujo-Pay, M., Conan, P. (2018). – Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export. Nature Communication, 9, 953. https://doi.org/10.1038/s41467-018-03376-9.

Kemp A. E. S., Pearce R. B., Grigorov I., Rance J., Lange C. B., Quilty P., Salter I. (2006). – Production of giant marine diatoms and their export at oceanic frontal zones: implications for Si and C flux from stratified oceans. Global Biogeochemical Cycles, 20, GB4S04, 1-13.

Kropelin S., Verschuren D., Lezine A.-M., Eggermont H., Cocquyt C., Francus P., Cazet J.-P., Fagot M., Rumes B., Russell J. M., Darius F., Conley D. J., Schuster M., von Suchodoletz H., Engstrom D. R. (2008). – Climate-Driven Ecosystem Succession in the Sahara : The Past 6000 Years. Science, 320, 765-768.

Ludes B., Coste M. (1996). – Diatomées et médecine légale. Applications de la recherche des diatomées au diagnostic de la submersion vitale. Ed. Paris, 255 p.

Mann D. G. (1999). – The species concept in diatoms. Phycologia, 38, 437-495.

Medlin L.K., Kooistra W.H.C.F., Gersonde R., Sims P.A., Wellbrock U. (1997). – Is the origin of the diatoms related to the end-Permian mass extinction? Nova Hedwigia, 65, 1-11.

Medlin L.K., Kooistra W.H.C.F., Schmid A.-M.M. (2000). – A review of the evolution of the diatoms - a total approach using molecules, morphology and geology. In: Witkowski A., & Sieminska J. (eds), The Origin and Early Evolution of the Diatoms: Fossil, Molecular and Biogeographical Approaches. W. Szafer Institute of Botany, Polish Academy of Sciences, Cracow, 13-35.

Novello A., Lebatard A.-E, Moussa A., Barboni D., Sylvestre F., Bourlès D.L., Paillès C., Buchet G., Decarreau A., Duringer P., Ghienne J.-F., Maley J., Mazur J.-C., Roquin C., Schuster M., Vignaud P. (2015). – Micro-botanical investigations on a new 10Be/9Be dating lacustrine record from Chad: new insight on the Mio-Pliocene paleoenvironmental changes in Central Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 430, 85-103.

Paillès C., Sylvestre F., Tonetto A., Mazur J.C., Conrod S. (2020). – New fossil genus and new extant species of diatoms (Stephanodiscaceae, Bacillariophyceae) from Pleistocene sediments in the Neotropics (Guatemala, Central America): adaptation to a changing environment? European Journal of Taxonomy, 726, 1-23.

Remadji, R. (2019). – Etude des diatomées actuelles des lacs du Tchad : Taxonomie, Diversité et Calibration. Remadji Rirongarti. Thèse de Doctorat CEREGE- Aix-Marseille Université, 189 p.

Remadji R., Cocquyt C., Paillès C., Sylvestre F. (2022). – Staurophora ouniangaensis spec.nov. (Bacillariophyceae, Anomoeoneidaceae), a new diatom from the Ounianga Lakes in the Sahara, Chad. Phytotaxa, 558, 103-115.

Remadji R., Sylvestre F., Paillès C, Chalié F., Mazur, J.C, Mahamat Nour A., Barthelemy W., Mariot H., Van der Meeren T., Poulin C., Deschamps P., Abderamane, M. (2023). – Modern diatom calibration data from Saharan lakes for inferring hydrochemistry. Journal of Paleolimnology, 69, 231-248.

Richardson, T.L., Jackson, G.A. (2007). – Small phytoplankton and carbon export from the surface ocean. Science, 315, 838-840.

Round F. E., Crawford R. M., Mann D.G. (2007). – The Diatoms. Biology and Morphology of the Genera. Cambridge University Press, 747 p.

Sanchez C., Belleville P., Popall M., Nicole L. (2011). – Applications of advanced hybrid organic-inorganic nanomaterials. Chemical Society Reviews, 40, 696-753.

Schuster M., Duringer P., Ghienne J.F., Vignaud P., Taisso Mackaye H., Likius A., Brunet M. (2006). – The Age of the Sahara Desert. Science, 311, 821.

Smol J. P., Stoermer E. F. (2010). – The diatoms: applications for the Environment and Earth Sciences. Cambridge University Press, 2nde édition. 686 p.

Sylvestre F., Deschamps P., Adoum Bari Sinine, Rirongarti R., Mazur J.C., Waldmann N., Do Amaral P., Bouchez C., Doumnang J.C. (2019). – Paléo-environnements et variations paléo-hydrologiques du lac Tchad au cours des 12 000 dernières années. In: C. Raimond, F. Sylvestre, D. Zakinet, Moussa A. (eds), 2019, Le Tchad des Lacs. Collection Synthèse IRD, 53-64.

Vallet-Regí M., Colilla M., González B. (2011). – Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics. Chemical Society Reviews, 40, 596-607.

Van der Meeren, T., Verschuren, D., Sylvestre, F., Nassour Y.A., Naudts, E.L., Aguilar Ortiz, L.E., Deschamps, P., Tachikawa, K., Bard, E., Schuster, M., Abderamane, M., (2022). – A predominantly tropical influence on late Holocene hydroclimate variation in the hyperarid central Sahara. Science Advances, 8, 14.

Vizinet J., de Reviers B. (1995). – Les utilisations des diatomées. Vie et Milieu, 45, 301-314.

Yacoub A.N., Sylvestre F., Moussa A., Hoelzmann P., Alexandre A., Dinies M., Chalié F., Vallet-Coulomb C., Paillès C., Darius F., Sonzogni C., Couapel M., Mazur JC., Kröpelin S. (2023). – The African Holocene Humid Period in the Tibesti mountains (central Sahara, Chad): Climate reconstruction inferred from fossil diatoms and their oxygen isotope composition. Quaternary Science Reviews, 308, 1-17.



11 > Les climats et la géographie du Sud-Est de la France au Paléogène enregistrés dans les lacs


François Fournier1, Nazim Semmani1, Alexandre Lettéron1, Jean-Pierre Suc2, Aixa Tosal3, Séverine Fauquette4, Michel Séranne5, Speranța-Maria Popescu6, Mihaela Carmen Melinte-Dobrinescu7, Jean Borgomano1

1Aix Marseille Université, CNRS, IRD, Cerege, Um 34, 13331, Marseille Cedex 03

2Sorbonne Université, CNRS-INSU, Institut des Sciences de la Terre Paris, UMR 7193, 75005 Paris

3Departament de Dinàmica de la Terra i de l’Oceà (DDTO), Facultat de Ciències de la Terra, Universitat de Barcelona (UB), C/de Martí Franqués s/n, 08028 Barcelona, Catalogne, Espagne

4Institut des Sciences de l’Evolution de Montpellier (ISEM), CNRS, Univ. Montpellier, IRD, EPHE, Montpellier

5Géosciences Montpellier, Université de Montpellier - CNRS, Montpellier

6GeoBioStratData.Consulting, 69140 Rillieux-la-Pape

7National Institute of Marine Geology and Geo-Ecology, 70318 Bucarest, Roumanie


Laurent, L., (1899). – Flore des calcaires de Célas. Annales du Musée d’Histoire Naturelle de Marseille, série II, tome I. Mouillot, Marseille, 148 p.

Lettéron, A., Fournier, F., Hamon, Y., Villier, L., Margerel, J.P.., Bouche, A., Feist, M., and Joseph, P., (2017). – Multi-proxy paleoenvironmental reconstruction of saline lake carbonates: Paleoclimatic and paleogeographic implications (Priabonian-Rupelian, Issirac Basin, SE France). Sedimentary Geology, 358, 97-120.

Lettéron, A., Hamon, Y., Fournier, F., Séranne, M., Pellenard, P., and Joseph, P., (2018). – Reconstruction of a saline, lacustrine carbonate system (Priabonian, St-Chaptes Basin, SE France): Depositional models, paleogeographic and paleoclimatic implications. Sedimentary Geology, 367, 20-47.

Lettéron, A., Hamon, Y., Fournier, F., Demory, F., Séranne, M., Joseph, P., (2022). – Stratigraphic architecture of a saline lake system: From lake depocentre (Alès Basin) to margins (Saint-Chaptes and Issirac basins), Eocene–Oligocene transition, south-east France. Sedimentology, 69(2), 651-695.

Semmani, N., Fournier, F., Léonide, P., Feist, M., Boularand, S., Borgomano, J., (2022). – Transgressive-regressive cycles in saline lake margin oolites:paleogeographic implications (Priabonian, Vistrenque basin,SE France). BSGF - Earth Sciences Bulletin, 193, 8.

Semmani, N., Fournier, F., Suc, J.-P, Fauquette, S., Godeau, N., Guihou, A., Popescu, S.-M., Melinte-Dobrinescu, M., Thomazo, C., Marié, L., Deschamps, P., Borgomano, J., (2023). – The Paleogene continental basins from SE France: New geographic and climatic insights from an integrated approach. Palaeogeography Palaeoclimatology Palaeoecology, 615, 111452.

Semmani, N., Fournier, F., Léonide, P., Suc, J.-P, Fauquette, S., Séranne, M., Marié, L., Borgomano, J., (sous presse). – Continental depositional record of climate and tectonic evolution around the Eocene-Oligocene transition in southeast France: perspectives from the Vistrenque Basin (Camargue). BSGF - Earth Sciences Bulletin.

Séranne M. (1999). – The Gulf of Lion continental margin (NW Mediterranean) revisited by IBS: an overview. In: Durand B., Jolivet L., Horváth F., Séranne M. (eds), The Mediterranean basins: Tertiary extension within the Alpine Orogen. The Geological Society Special Publication, 156, 15-36.

Séranne M, Couëffé R, Husson E, Baral C, Villard J. (2021). – The transition from Pyrenean shortening to Gulf of Lion rifting in Languedoc (South France) –A tectonic-sedimentation analysis. BSGF - Earth Sciences Bulletin, 192, 27.

Tanrattana, M., Boura, A., Jacques, F. M. B., Villier, L., Fournier, F., Enguehard, A., Cardonnet, S., Voland, G., Garcia, A., Chaouch, S., De Franceschi, D., (2020). – Climatic evolution in Western Europe during the Cenozoic: insights from historical collections using leaf physiognomy. Geodiversitas, 42, 151-174.

Tosal, A., Tanrattana, M., Fournier, F., De Franceschi, D., Del Rio, C., Martín-Closas, C., Lettéron, A., Semmani, N., Boura, A., (2023). – Plant palaeoecology of the latest Eocene flora from the Saint-Chaptes and Alès basins of Gard, southern France. Palaeogeography Palaeoclimatology Palaeoecology, 627, 111740.

Westerhold T., Marwan N., Drury A.J., Liebrand D., Agnini C., Anagnostou E., Barnet J.S.K., Bohaty S.M., De Vleeschouwer D., Florin D., Lauretano V., Littler K., Lourens L.J., Lyle M., Pälike H., Röhl U., Tian J., Wilkens R.H., Wilson P.A., Zachos J.C. (2020).– An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369, 1383-1387.