360 F 30048671 zo6yATKHPV2qPQxEoqfbtDsRVpj9UNlK

  • Le fonds

 

La carrière des Brillants à Meudon (J.-P. Gély, D. Obert, B. Souffaché, M. Viré)

Al Heib M., Duval C., Theoleyre F., Watelet J.-M. et Gombert P. (2014). – Analysis of the historical collapse of an abandoned underground chalk mine in 1961 in Clamart (Paris, France). Bull. Eng. Geol. Environ., 74, p. 1001-1018.

Bignot G. (1990a). – Le contact du calcaire montien sur la craie campanienne â Meudon. - Controverses anciennes. Perspectives nouvelles. Bull. inf. Géol. Bass. Paris, 27(4), p. 33-36.

Bignot G. (1990b). – La place du calcaire de Meudon dans la paléogéographie montienne du bassin de Paris. Approche micropaléontologique. Bull. inf. Géol. Bass. Paris, 27(4), p. 51-61.

Bonvallet J. et Chambon C. (1980). – Détermination d'un coefficient de sécurité dans les exploitations par chambres et petits piliers abandonnés. Rev. fr. Géotech., 13, p. 15-29.

Clouzeau H. (2000). – Crayères ou carrières, Blanc de Meudon ou d’Espagne. Féd. Soc. Hist. Archéo. Paris Île-de-France, actes du colloque « Artisanat, industrialisation et désindustrialisation en Île-de-France », mémoire 51, p. 183-208.

Collectif (2020). – Merveilles sous Rodin. Carrières et collines Rodin (Meudon). Cahier spécial, 2e semestre 2020, Association Ar’site éd., 44 p.

De Wever P., Egoroff G., Cornée A., Graviou P., Avoine J. et Baillet L. (2018). – Patrimoine géologique. Inventaire national. EDP Sciences éd., 252 p.

Galoyer A. (1990). – La géologie à Meudon. Bull. inf. Géol. Bass. Paris, 27(4), p. 56.

Gaudant J. (1990). – Meudon el la limite crétacé-tertiaire : aperçu historique. Bull. inf. Géol. Bass. Paris, 27(4), p. 17-20.

Gély J.-P. (1990). – Observations pétrographiques sur la craie de Meudon. Bull. inf. Géol. Bass. Paris, 27(4), p. 44-45. 

Gély J.-P., Lorenz C. et Obert D. (1990). – Tectonique synsédimentaire. Tectonique cassante et karst dans l’anticlinal de Meudon. Bull. inf. Géol. Bass. Paris, 27(4), p. 3743.

Gossé E. (1990). – Les Carrières de la colline des Brillants dite de « Rodin » à Meudon. Bull. inf. Géol. Bass. Paris, 27(4), p. 7-16.

Maury V. (1979). – Effondrements spontanés. Synthèse d’observations et possibilité de mécanisme initiateur par mise en charge hydraulique. Rev. Ind. minérale, p. 511-522.

Maury V. (1980). – Effondrements spontanés et possibilité de mise en charge hydraulique. Rev. fr. Géotech., 13, p. 63-68.

Maury V. (2003). – Stabilité de la colline Rodin et des carrières Arnaudet. Comité de Sauvegarde des Sites de Meudon, Bull. 112(3), p. 4-16.

Moiriat D., Pothérat P., Durville J.-L. et Bébien J. (2005). – Observations sur la fracturation liée à l’incision d’une vallée. Carrière souterraine des Brillants (Hauts-de-Seine). Bull. lab. ponts chaussées, 258-259, réf. 4523, p. 3-14.

Russel E. D., de Broin F., Galoyer A., Gaudant J., Gingerich P. D., Rage J.-C. (1990). – Les vertébrés du Sparnacien de Meudon. Bull. inf. Géol. Bass. Paris, 27(4), p. 21-32.

Tincelin E. et Sinou P. (1962). – Effondrements brutaux et généralisés, coups de toit. Rev. ind. Minérale, p 239-262.

 

 

Bibliographie du dossier

Métallogénie de l’antimoine - état des connaissances (A. Pochon et E. Gloaguen)

Bellot, J.‐P., Lerouge, C., Bailly, L., Bouchot, V. (2003). – The Biards Sb‐Au–Bearing Shear Zone (Massif Central, France): An Indicator of Crustal‐Scale Transcurrent Tectonics Guiding Late Variscan Collapse. Econ. Geol., 98, 1427-1447.

Cheval-Garabedian, F., Faure, M., Marcoux, E., Gouin, J., Picault, M. (2020). – The La Bellière gold and antimony district (French Armorican Massif): A two-stage evolution model controlled by Variscan strike-slip tectonic. Ore Geol. Rev., 125, 103681.

Fu, S., Zajacz, Z., Tsay, A., Hu, T. (2020). – Can magma degassing at depth donate the metal budget of large hydrothermal Sb deposits? Geochim. Cosmochim. Acta, 290, 1-15.

Hattori, K.H., Guillot, S. (2003). – Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge. Geology, 31, 525-528.

Hu, A., Peng, J. (2018). – Fluid inclusions and ore precipitation mechanism in the giant Xikuangshan mesothermal antimony deposit, South China: Conventional and infrared microthermometric constraints. Ore Geol. Rev., 95, 49-64.

Maciag, B.J., Brenan, J.M. (2020). – Speciation of arsenic and antimony in basaltic magmas. Geochim. Cosmochim. Acta, 276, 198-218.

Munoz, M., Courjault‐Radé, P., Tollon, F. (1992). – The massive stibnite veins of the French Palaeozoic basement: a metallogenic marker of Late Variscan brittle extension. Terra Nova, 4, 171-177.

Olsen, N.J., Mountain, B.W., Seward, T.M. (2019). – Antimony(III) Speciation in Hydrosulfide Solutions from 70 to 400°C and up to 300 bar. ACS Earth Space Chem., 3, 1058-1072.

Perichaud, J.‐J. (1980). – L’antimoine, ses minerais et ses gisements. Synthèse gîtologique sur les gisements du Massif Central français. Chron. Rech. Minière, 456, 5-64.

Phillips, G.N., Powell, R. (2010). – Formation of gold deposits: a metamorphic devolatilization model. J. Metamorph. Geol., 28, 689-718.

Pitcairn, I.K., Leventis, N., Beaudoin, G., Faure, S., Guilmette, C., Dubé, B. (2021). – A metasedimentary source of gold in Archean orogenic gold deposits. Geology, https://doi.org/10.1130/G48587.1.

Pochon, A., Gapais, D., Gloaguen, E., Gumiaux, C., Branquet, Y., Cagnard, F., Martelet, G. (2016a). – Antimony deposits in the Variscan Armorican belt, a link with mafic intrusives? Terra Nova, 28, 138-145.

Pochon, A., Poujol, M., Gloaguen, E., Branquet, Y., Cagnard, F., Gumiaux, C., Gapais, D. (2016b). – U‐Pb LA‐ICP‐MS dating of apatite in mafic rocks: Evidence for a major magmatic event at the Devonian‐Carboniferous boundary in the Armorican Massif (France). Am. Mineral., 101, 2430-2442.

Pochon, A., Beaudoin, G., Branquet, Y., Boulvais, P., Gloaguen, E., Gapais, D. (2017). – Metal mobility during hydrothermal breakdown of Fe‐Ti oxides: Insights from Sb‐Au mineralizing event (Variscan Armorican Massif, France). Ore Geol. Rev., 91, 66-99.

Pochon, A., Gloaguen, E., Branquet, Y., Poujol, M., Ruffet, G., Boiron, M.‐C., Boulvais, P., Gumiaux, C., Cagnard, F., Gouazou, F., Gapais, D. (2018). – Variscan Sb‐Au mineralization in Central Brittany (France): A new metallogenic model derived from the Le Semnon district. Ore Geol. Rev., 97, 109-142.

Pochon, A., Branquet, Y., Gloaguen, E., Ruffet, G., Poujol, M., Boulvais, P., Gumiaux, C., Cagnard, F., Baele, J.‐M., Kéré, I., Gapais, D. (2019). – A Sb ± Au mineralizing peak at 360 Ma in the Variscan belt. BSGF ‐ Earth Sci. Bull., 190, 4.

Schwarz‐Schampera, U. (2014). – Antimony, in: Critical Metals Handbook. Gunn, Gus, p. 70-98.

 

 

De l’antimoine aux antipodes : la mine de stibine de Nakédy (Nouvelle-Calédonie) (C. Gineste)

Delvinquier, B. et al. (1998). – Historique des mines d’antimoine de Nakéty. Bulletin SEH-NC, 4, p. 21-32.

Maurizot, P. et al. (2020). – New Caledonia. Geology, Geodynamic Evolution and Mineral Resources. Geological Society, London, Memoirs, 51.

BRGM (1986). – Inventaire du territoire de la Nouvelle-Calédonie – Nakety (gîte antimono-aurifère filonien). Rapport, mai 1986.

Glasser, E. (1904). – Rapport à M. le ministre des Colonies sur les richesses minérales de la Nouvelle-Calédonie. Ann. Mines, Dunod.

 

 

L’antimoine dans les sites et sols pollués (A. Courtin)

Ackermann, S., Gieré, R., Newville, M., Majzlan, J., (2009). – Antimony sinks in the weathering crust of bullets from Swiss shooting ranges. Sci. Total Environ. 407, 1669-1682. https://doi.org/10.1016/j.scitotenv.2008.10.059

Ashley, P.M., Craw, D., Graham, B.P., Chappell, D.A. (2003). – Environmental mobility of antimony around mesothermal stibnite deposits, New South Wales, Australia and southern New Zealand. J. Geochem. Explor., 77, 1-14. https://doi.org/10.1016/S0375-6742(02)00251-0

Bai, J., Zhao, X. (2020). – Ecological and Human Health Risks of Heavy Metals in Shooting Range Soils: A Meta Assessment from China. Toxics, 8, 32. https://doi.org/10.3390/toxics8020032

Barker, A.J., Clausen, J.L., Douglas, T.A., Bednar, A.J., Griggs, C.S., Martin, W.A. (2021). – Environmental impact of metals resulting from military training activities: A review. Chemosphere, 265, 129110. https://doi.org/10.1016/j.chemosphere.2020.129110

Bart, S., Motelica-Heino, M., Miard, F., Joussein, E., Soubrand, M., Bourgerie, S., Morabito, D., (2016). – Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols. CATENA; 136, 44-52. https://doi.org/10.1016/j.catena.2015.07.008

Belzile, N., Chen, Y.-W., Filella, M. (2011). – Human Exposure to Antimony: I. Sources and Intake. Crit. Rev. Environ. Sci. Technol., 41, 1309-1373. https://doi.org/10.1080/10643381003608227

Boreiko, C.J., Rossman, T.G. (2020). – Antimony and its compounds: Health impacts related to pulmonary toxicity, cancer, and genotoxicity. Toxicol. Appl. Pharmacol., 403, 115156. https://doi.org/10.1016/j.taap.2020.115156

Brignon, J.M., Proust, S. (2018). – j.-m. brignon : jean-marc.brignon@ineris.fr 49.

Casiot, C., Ujevic, M., Munoz, M., Seidel, J.L., Elbaz-Poulichet, F. (2007). – Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb basin, France). Appl. Geochem,. 22, 788-798. https://doi.org/10.1016/j.apgeochem.2006.11.007

Courtin-Nomade, A., Rakotoarisoa, O., Bril, H., Grybos, M., Forestier, L., Foucher, F., Kunz, M. (2012). – Weathering of Sb-rich mining and smelting residues: Insight in solid speciation and soil bacteria toxicity. Geochemistry, 72, 29-39. https://doi.org/10.1016/j.chemer.2012.02.004

Diquattro, S., Garau, G., Mangia, N.P., Drigo, B., Lombi, E., Vasileiadis, S., Castaldi, P. (2020). Mobility and potential bioavailability of antimony in contaminated soils: Short-term impact on microbial community and soil biochemical functioning. Ecotoxicol. Environ. Saf., 196, 110576. https://doi.org/10.1016/j.ecoenv.2020.110576

Ettler, V., Mihaljevič, M., Šebek, O., Nechutný, Z. (2007). – Antimony availability in highly polluted soils and sediments – A comparison of single extractions. Chemosphere, 68, 455-463. https://doi.org/10.1016/j.chemosphere.2006.12.085

Fayiga, A.O., Saha, U.K. (2016). – Soil pollution at outdoor shooting ranges: Health effects, bioavailability and best management practices. Environ. Pollut., 216, 135-145. https://doi.org/10.1016/j.envpol.2016.05.062

Filella, M., Belzile, N., Chen, Y.-W. (2002). – Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry 21.

Filella, M., Williams, P.A., Belzile, N. (2009). – Antimony in the environment: knowns and unknowns. Environ. Chem., 6, 95. https://doi.org/10.1071/EN09007

Flynn, H.C., Meharg, A.A., Bowyer, P.K., Paton, G.I. (2003). – Antimony bioavailability in mine soils. Environ. Pollut., 124, 93-100. https://doi.org/10.1016/S0269-7491(02)00411-6

Gómez-Sagasti, M.T., Anza, M., Hidalgo, J., Artetxe, U., Garbisu, C., Becerril, J.M. (2021). – Recent Trends in Sustainable Remediation of Pb-Contaminated Shooting Range Soils: Rethinking Waste Management within a Circular Economy. Processes, 9, 572. https://doi.org/10.3390/pr9040572

Grande, J.A., Santisteban, M., de la Torre, M.L., Dávila, J.M., Pérez-Ostalé, E. (2018). – Map of impact by acid mine drainage in the river network of The Iberian Pyrite Belt (Sw Spain). Chemosphere, 199, 269-277. https://doi.org/10.1016/j.chemosphere.2018.02.047

Hammel, W., Debus, R., Steubing, L. (2000). – Mobility of antimony in soil and its availability to plants. Chemosphere, 41, 1791-1798. https://doi.org/10.1016/S0045-6535(00)00037-0

He, M., Wang, N., Long, X., Zhang, C., Ma, C., Zhong, Q., Wang, A., Wang, Y., Pervaiz, A., Shan, J. (2019). – Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects. J. Environ. Sci., 75, 14-39. https://doi.org/10.1016/j.jes.2018.05.023

Herath, I., Vithanage, M., Bundschuh, J. (2017). – Antimony as a global dilemma: Geochemistry, mobility, fate and transport. Environ. Pollut., 223, 545-559. https://doi.org/10.1016/j.envpol.2017.01.057

Jahn, T.P., Bienert, G.P. (Eds.) (2010). – MIPS and their role in the exchange of metalloids, Advances in experimental medicine and biology. Springer Science+Business Media ; Landes Bioscience, New York, N.Y. : Austin, Tex.

Jana, U., Chassany, V., Bertrand, G., Castrec-Rouelle, M., Aubry, E., Boudsocq, S., Laffray, D., Repellin, A. (2012). – Analysis of arsenic and antimony distribution within plants growing at an old mine site in Ouche (Cantal, France) and identification of species suitable for site revegetation. J. Environ. Manage., 110, 188-193. https://doi.org/10.1016/j.jenvman.2012.06.007

Johnson, C.R., Antonopoulos, D.A., Boyanov, M.I., Flynn, T.M., Koval, J.C., Kemner, K.M., O’Loughlin, E.J. (2021). – Reduction of Sb(V) by coupled biotic-abiotic processes under sulfidogenic conditions. Heliyon 7, e06275. https://doi.org/10.1016/j.heliyon.2021.e06275

Karimian, N., Johnston, S.G., Burton, E.D. (2018). – Antimony and arsenic partitioning during Fe2+-induced transformation of jarosite under acidic conditions. Chemosphere, 195, 515-523. https://doi.org/10.1016/j.chemosphere.2017.12.106

Lewińska, K., Karczewska, A. (2019). – Antimony in soils of SW Poland—an overview of potentially enriched sites. Environ. Monit. Assess., 191, 70. https://doi.org/10.1007/s10661-019-7214-9

Lewis, J., Sjöström, J., Skyllberg, U., Hägglund, L. (2010). – Distribution, Chemical Speciation, and Mobility of Lead and Antimony Originating from Small Arms Ammunition in a Coarse-Grained Unsaturated Surface Sand. J. Environ. Qual., 39, 863-870. https://doi.org/10.2134/jeq2009.0211

Li, J., Zheng, B., He, Y., Zhou, Y., Chen, X., Ruan, S., Yang, Y., Dai, C., Tang, L. (2018). – Antimony contamination, consequences and removal techniques: A review. Ecotoxicol. Environ. Saf., 156, 125-134. https://doi.org/10.1016/j.ecoenv.2018.03.024

Majzlan, J., Lalinska, B., Chovan, M., Blass, U., Brecht, B., Gottlicher, J., Steininger, R., Hug, K., Ziegler, S., Gescher, J. (2011). – A mineralogical, geochemical, and microbiogical assessment of the antimony- and arsenic-rich neutral mine drainage tailings near Pezinok, Slovakia. Am. Mineral., 96, 1-13. https://doi.org/10.2138/am.2011.3556

Manaka, M., Yanase, N., Sato, T., Fukushi, K. (2007). – Natural attenuation of antimony in mine drainage water. Geochem. J., 41, 17-27. https://doi.org/10.2343/geochemj.41.17

Mbadugha, L., Cowper, D., Dossanov, S., Paton, G.I. (2020). – Geogenic and anthropogenic interactions at a former Sb mine: environmental impacts of As and Sb. Environ. Geochem. Health, 42, 3911-3924. https://doi.org/10.1007/s10653-020-00652-w

Merian, E.E., Anke, M., Ihnat, M., Stoeppler, M. (2004). – Edited by E. Merian (†), M. Anke, M. Ihnat and M. Stoeppler 1794.

Mitsunobu, S., Takahashi, Y., Sakai, Y. (2008). – Abiotic reduction of antimony(V) by green rust (Fe4(II)Fe2(III)(OH)12SO4·3H2O). Chemosphere, 70, 942-947. https://doi.org/10.1016/j.chemosphere.2007.07.021

Mitsunobu, S., Takahashi, Y., Terada, Y. (2010). – μ-XANES Evidence for the Reduction of Sb(V) to Sb(III) in Soil from Sb Mine Tailing. Environ. Sci. Technol., 44, 1281-1287. https://doi.org/10.1021/es902942z

Murciego, A.M., Sánchez, A.G., González, M.A.R., Gil, E.P., Gordillo, C.T., Fernández, J.C., Triguero, T.B. (2007). – Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain). Environ. Pollut., 145, 15-21. https://doi.org/10.1016/j.envpol.2006.04.004

Ning, Z., Liu, E., Yao, D., Xiao, T., Ma, L., Liu, Y., Li, H., Liu, C. (2021). – Contamination, oral bioaccessibility and human health risk assessment of thallium and other metal(loid)s in farmland soils around a historic Tl Hg mining area. Sci. Total Environ., 758, 143577. https://doi.org/10.1016/j.scitotenv.2020.143577

Nriagu, J.O., Pacyna, J.M. (1988). – Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134-139. https://doi.org/10.1038/333134a0

Okkenhaug, G., Grasshorn Gebhardt, K.-A., Amstaetter, K., Lassen Bue, H., Herzel, H., Mariussen, E., Rossebø Almås, Å., Cornelissen, G., Breedveld, G.D., Rasmussen, G., Mulder, J. (2016). – Antimony (Sb) and lead (Pb) in contaminated shooting range soils: Sb and Pb mobility and immobilization by iron based sorbents, a field study. J. Hazard. Mater., 307, 336-343. https://doi.org/10.1016/j.jhazmat.2016.01.005

Okkenhaug, G., Smebye, A.B., Pabst, T., Amundsen, C.E., Sævarsson, H., Breedveld, G.D. (2018). – Shooting range contamination: mobility and transport of lead (Pb), copper (Cu) and antimony (Sb) in contaminated peatland. J. Soils Sediments, 18, 3310-3323. https://doi.org/10.1007/s11368-017-1739-8

Peretyazhko, T., Zachara, J.M., Boily, J.-F., Xia, Y., Gassman, P.L., Arey, B.W., Burgos, W.D. (2009). –. Mineralogical transformations controlling acid mine drainage chemistry. Chem. Geol., 262, 169-178. https://doi.org/10.1016/j.chemgeo.2009.01.017

Pérez-Sirvent, C., Martínez-Sánchez, M.J., Martínez-López, S., Hernández-Córdoba, M. (2011). – Antimony distribution in soils and plants near an abandoned mining site. Microchem. J., 97, 52-56. https://doi.org/10.1016/j.microc.2010.05.009

Pierart, A., Shahid, M., Séjalon-Delmas, N., Dumat, C. (2015). – Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures. J. Hazard. Mater., 289, 219-234. https://doi.org/10.1016/j.jhazmat.2015.02.011

Qi, C., Wu, F., Deng, Q., Liu, G., Mo, C., Liu, B., Zhu, J. (2011). – Distribution and accumulation of antimony in plants in the super-large Sb deposit areas, China. Microchem. J., 97, 44-51. https://doi.org/10.1016/j.microc.2010.05.016

Radkova, A. (2017). – Mineralogical controls on antimony and arsenic mobility during tetrahedrite-tennantite weathering at historic mine sites Špania Dolina-Piesky and Ľubietová-Svätodušná, Slovakia. Am. Mineral., https://doi.org/10.2138/am-2017-5616

Ran, H., Guo, Z., Yi, L., Xiao, X., Zhang, L., Hu, Z., Li, C., Zhang, Y. (2021). – Pollution characteristics and source identification of soil metal(loid)s at an abandoned arsenic-containing mine, China. J. Hazard. Mater., 413, 125382. https://doi.org/10.1016/j.jhazmat.2021.125382

Roper, A.J., Williams, P.A., Filella, M. (2012). – Secondary antimony minerals: Phases that control the dispersion of antimony in the supergene zone. Geochemistry, 72, 9-14. https://doi.org/10.1016/j.chemer.2012.01.005

Sanderson, P., Qi, F., Seshadri, B., Wijayawardena, A., Naidu, R. (2018). – Contamination, Fate and Management of Metals in Shooting Range Soils—a Review. Curr. Pollut. Rep., 4, 175-187. https://doi.org/10.1007/s40726-018-0089-5

Scheinost, A.C., Rossberg, A., Vantelon, D., Xifra, I., Kretzschmar, R., Leuz, A.-K., Funke, H., Johnson, C.A. (2006). – Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochim. Cosmochim. Acta, 70, 3299-3312. https://doi.org/10.1016/j.gca.2006.03.020

Sejkora, J.O., Vitálo, J.T., Čejka, J.Ď. (2007). – Schafarzikite from the type locality Pernek (Male Karpaty Mountains, Slovak Republic) revisited. Eur. J. Mineral., 19, 419-427. https://doi.org/10.1127/0935-1221/2007/0019-1723

Sun, W., Xiao, E., Kalin, M., Krumins, V., Dong, Y., Ning, Z., Liu, T., Sun, M., Zhao, Y., Wu, S., Mao, J., Xiao, T. (2016). – Remediation of antimony-rich mine waters: Assessment of antimony removal and shifts in the microbial community of an onsite field-scale bioreactor. Environ. Pollut., 215, 213-222. https://doi.org/10.1016/j.envpol.2016.05.008

Tóth, G., Hermann, T., Da Silva, M.R., Montanarella, L. (2016). – Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int., 88, 299-309. https://doi.org/10.1016/j.envint.2015.12.017

Urík, M., Farkas, B., Miglierini, M.B., Bujdoš, M., Mitróová, Z., Kim, H., Matúš, P. (2021). – Mobilisation of hazardous elements from arsenic-rich mine drainage ochres by three Aspergillus species. J. Hazard. Mater., 409, 124938. https://doi.org/10.1016/j.jhazmat.2020.124938

Verbeeck, M., Moens, C., Gustafsson, J.P. (2021). – Mechanisms of antimony ageing in soils: An XAS study. Appl. Geochem., 128, 104936. https://doi.org/10.1016/j.apgeochem.2021.104936

Vodyanitskii, Yu. N. (2010). – The role of iron in the fixation of heavy metals and metalloids in soils: a review of publications. Eurasian Soil Sci., 43, 519-532. https://doi.org/10.1134/S1064229310050054

Wilson, N.J., Craw, D., Hunter, K. (2004). – Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand. Environ. Pollut., 129, 257-266. https://doi.org/10.1016/j.envpol.2003.10.014

Wilson, S.C., Lockwood, P.V., Ashley, P.M., Tighe, M. (2010). – The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environ. Pollut., 158, 1169–1181. https://doi.org/10.1016/j.envpol.2009.10.045

World Health Organization (2017). – Guidelines for drinking-water quality.

Zhang, Z., Lu, Y., Li, H., Tu, Y., Liu, B., Yang, Z. (2018). – Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River, China. Sci. Total Environ., 645, 235-243. https://doi.org/10.1016/j.scitotenv.2018.07.026

http://www.epa.gov

 

 

 

facebook SGF  twitter SGF  youtube SGF  linkedin SGF  instagram SGF