360 F 30048671 zo6yATKHPV2qPQxEoqfbtDsRVpj9UNlK

facebooklinkedintwitter youtube
  • Le fonds



Le lithium : géochimie et minéralogie (J. Melleton et al.)

Černý, P., Blevin, P.L., Cuney, M., London, D. (2005). – Granite-Related Ore Deposits, in: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.R. (Eds.), Economic Geology - One Hundredth Anniversary Volume 1905-2005. Society of Economic Geologists, Inc., Littleton, CO, USA, p. 337-370.

Chan, L.-H., Gieskes, J.M., You, C.-F., Edmond, J.M. (1994). – Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California. Geochim. Cosmochim. Acta, 58, 4443–4454. https://doi.org/10.1016/0016-7037(94)90346-8

Chan, L.-H., Kastner, M. (2000). – Lithium isotopic compositions of pore fluids and sediments in the Costa Rica subduction zone: implications for fluid processes and sediment contribution to the arc volcanoes. Earth Planet. Sci. Lett., 183, 275-290. https://doi.org/10.1016/S0012-821X(00)00275-2

Chan, L.H., Leeman, W.P., You, C.-F. (2002). – Lithium isotopic composition of Central American volcanic arc lavas: implications for modification of subarc mantle by slab-derived fluids: correction. Chem. Geol., 182, 293-300. https://doi.org/10.1016/S0009-2541(01)00298-4

Dutrow, B.L., Holdaway, M.J., Hinton, R.W. (1986). – Lithium in staurolite and its petrologic significance. Contrib. Mineral. Petrol., 94, 496-506. https://doi.org/10.1007/BF00376341

Jakobsson, E., Argüello-Miranda, O., Chiu, S.-W., Fazal, Z., Kruczek, J., Nunez-Corrales, S., Pandit, S., Pritchet, L. (2017). – Towards a Unified Understanding of Lithium Action in Basic Biology and its Significance for Applied Biology. J Membr Biol., 250, 587-604. https://doi.org/10.1007/s00232-017-9998-2

Feenstra, A., Ockenga, E., Rhede, D., Wiedenbeck, M. (2003). – Li-rich zincostaurolite and its decompression-related breakdown products in a diaspore-bearing metabauxite from East Samos (Greece): An EMP and SIMS study. Am. Mineral., 88, 789-805. https://doi.org/10.2138/am-2003-5-608

Fouillac, C., Michard, G. (1981). – Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs. Geothermics, 10, 55-70. https://doi.org/10.1016/0375-6505(81)90025-0

Gloaguen E., Melleton J., Lefebvre G., Tourlière B., S. Yart avec la collaboration de B. Gourcerol. (2018). – Ressources métropolitaines en lithium et analyse du potentiel par méthodes de prédictivité. Rapport final. Rapport BRGM/RP-68321-FR, 128 p.

Grew E.S. (2020). – The Minerals of Lithium. Elements, 16, 235-240.

Hirst, D.M. (1962). – The geochemistry of modern sediments from the Gulf of Paria-II The location and distribution of trace elements. Geochim. Cosmochim. Acta, 26, 1147-1187. https://doi.org/10.1016/0016-7037(62)90050-9

Horstman, E.L. (1957). – The distribution of lithium, rubidium and caesium in igneous and sedimentary rocks. Geochim. Cosmochim. Acta, 12, 1-28. https://doi.org/10.1016/0016-7037(57)90014-5

Huh, Y., Chan, L.-H., Chadwick, O.A. (2004). – Behavior of lithium and its isotopes during weathering of Hawaiian basalt. Geochem. Geophys. Geosystems, 5(9). https://doi.org/10.1029/2004GC000729

Icenhower, J., London, D. (1995). – An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O). Am. Mineral., 80, 1229-1251. https://doi.org/10.2138/am-1995-11-1213

Lodders K. (2020). – The Cosmic Lithium Story. Elements, 16, 241-246.

Marschall et al., (2017). – The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. GCA, 207, p.102-138.

Michaud, J.A.-S., Gumiaux, C., Pichavant, M., Gloaguen, E., Marcoux, E. (2020.) – From magmatic to hydrothermal Sn-Li-(Nb-Ta-W) mineralization: The Argemela area (central Portugal). Ore Geology Reviews, 116, 103215. https://doi.org/10.1016/j.oregeorev.2019.103215

Millot, R., Négrel, P. (2007). – Multi-isotopic tracing (δ7Li, δ11B, 87Sr/86Sr) and chemical geothermometry: evidence from hydro-geothermal systems in France. Chem. Geol., 244, 664-678. https://doi.org/10.1016/j.chemgeo.2007.07.015

Millot, R., Vigier, N., Gaillardet, J. (2010). – Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada. Geochim. Cosmochim. Acta, 74, 3897-3912. https://doi.org/10.1016/j.gca.2010.04.025

Nesbitt, H.W., Young, G.M. (1982). – Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715-717. https://doi.org/10.1038/299715a0

Pogge von Strandmann, P.A.E., Burton, K.W., Opfergelt, S., Eiríksdóttir, E.S., Murphy, M.J., Einarsson, A., Gislason, S.R. (2016). – The effect of hydrothermal spring weathering processes and primary productivity on lithium isotopes: Lake Myvatn, Iceland. Chem. Geol., 445, 4-13. https://doi.org/10.1016/j.chemgeo.2016.02.026

Qiu, L. (2011). – Lithium and δ7Li behavior during metamorphic dehydration processes and crustal evolution. University of Maryland, College Park.

Roda-Robles, E., Pesquera, A., Gil-Crespo, P.P., Vieira, R., Lima, A., Garate-Olave, I., Martins, T., Torres-Ruiz, J. (2016). – Geology and mineralogy of Li mineralization in the Central Iberian Zone (Spain and Portugal). Mineral. Mag., 80, 103-126. https://doi.org/10.1180/minmag.2016.080.049

Romer, R.L., Meixner, A., Hahne, K. (2014). – Lithium and boron isotopic composition of sedimentary rocks - The role of source history and depositional environment: A 250Ma record from the Cadomian orogeny to the Variscan orogeny. Gondwana Res., 26, 1093-1110. https://doi.org/10.1016/j.gr.2013.08.015

Sauzéat, L., Rudnick, R.L., Chauvel, C., Garçon, M., Tang, M. (2015). – New perspectives on the Li isotopic composition of the upper continental crust and its weathering signature. Earth and Planetary Science Letters, 428, 181-192. https://doi.org/10.1016/j.epsl.2015.07.032

Scholz, F., Hensen, C., De Lange, G.J., Haeckel, M., Liebetrau, V., Meixner, A., Reitz, A., Romer, R.L. (2010). – Lithium isotope geochemistry of marine pore waters – Insights from cold seep fluids. Geochim. Cosmochim. Acta, 74, 3459-3475. https://doi.org/10.1016/j.gca.2010.03.026

Scholz, F., Hensen, C., Reitz, A., Romer, R.L., Liebetrau, V., Meixner, A., Weise, S.M., Haeckel, M. (2009). – Isotopic evidence (87Sr/86Sr, δ7Li) for alteration of the oceanic crust at deep-rooted mud volcanoes in the Gulf of Cadiz, NE Atlantic Ocean. Geochim. Cosmochim. Acta, 73, 5444-5459. https://doi.org/10.1016/j.gca.2009.06.004

Taylor, S.R., McLennan, S.M. (1985). – The continental crust: its composition and evolution. Blackwell, Oxford.

Teng, F.-Z., McDonough, W.F., Rudnick, R.L., Dalpé, C., Tomascak, P.B., Chappell, B.W., Gao, S. (2004). – Lithium isotopic composition and concentration of the upper continental crust. Geochim. Cosmochim. Acta, 68, 4167-4178. https://doi.org/10.1016/j.gca.2004.03.031

Tomascak, P.B. (2004). – Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences. Rev. Mineral. Geochem., 55, 153-195. https://doi.org/10.2138/gsrmg.55.1.153

Tourtelot, H.A., Brenner-Tourtelot, E.F. (1977). – Lithium in flint clay, bauxite, related high-alumina materials and sedimentary rocks in the United States: a preliminary survey (USGS Numbered Series No. 77-786), Open-File Report. U.S. Geological Survey.

Vigier, N., Decarreau, A., Millot, R., Carignan, J., Petit, S., France-Lanord, C. (2008). – Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle. Geochim. Cosmochim. Acta, 72, 780-792. https://doi.org/10.1016/j.gca.2007.11.011

Wenger, M., Armbruster, T. (1991). – Crystal chemistry of lithium; oxygen coordination and bonding. Eur. J. Mineral., 3, 387-399.

Zack, T., Tomascak, P.B., Rudnick, R.L., Dalpé, C., McDonough, W.F. (2003). – Extremely light Li in orogenic eclogites: The role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet. Sci. Lett., 208, 279-290. https://doi.org/10.1016/S0012-821X(03)00035-9



Isotopes du lithium : un outil qui a le vent en poupe (J. Melleton et R. Millot)

Huh, Y., L.‐H. Chan, and J. M. Edmond (2001). – Lithium isotopes as a probe of weathering processes: Orinoco River. Earth Planet. Sci. Lett., 194, 189-199.

Jeffcoate, A.B., Elliott, T., Kasemann, S.A., Ionov, D., Cooper, K., Brooker, R. (2007). – Li isotope fractionation in peridotites and mafic melts. Geochimica et Cosmochimica Acta, 71, 202–-18. https://doi.org/10.1016/j.gca.2006.06.1611

Marschall H.R., Tang M. (2020). – High-Temperature Processes: Is it Time for Lithium Isotopes? Elements. URL http://elementsmagazine.org/2020/08/01/high-temperature-processes-time-for-lithium-isotopes/

Millot R., Vigier N., Gaillardet J. (2010). – Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada. Geochimica et Cosmochimica Acta, 74, 3897-3912.

Pogge von Strandmann et al., (2020). – Elements. Lithium and Lithium Isotopes in Earth’s Surface Cycles. http://elementsmagazine.org/2020/08/01/lithium-isotopes-in-earths-surface-cycles/

Pogge von Strandmann, P.A.E., Vaks, A., Bar-Matthews, M., Ayalon, A., Jacob, E., Henderson, G.M. (2017). – Lithium isotopes in speleothems: Temperature-controlled variation in silicate weathering during glacial cycles. Earth and Planetary Science Letters, 469, 64-74. https://doi.org/10.1016/j.epsl.2017.04.014

Taetz S, John T, Bröcker M, Spandler C, Stracke A. (2018). – Fast intraslab fluid-flow events linked to pulses of high pore fluid pressure at the subducted plate interface. Earth and Planetary Science Letters, 482, 33-43.

Teng F-Z, McDonough WF, Rudnick RL, Walker RJ. (2006). – Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth and Planetary Science Letters, 243, 701-710

Tomascak PB, Widom E, Benton LD, Goldstein SL, Ryan JG. (2002). – The control of lithium budgets in island arcs. Earth and Planetary Science Letters, 196, 227-238.



Les salars lithinifères (J. Melleton)

Bowell R.J., Lagos L., de los Hoyos C.R., Declercq J. (2020). – Classification and Characteristics of Natural Lithium Resources. Elements, 16, 259-264.

Christman P., Gloaguen E., Labbé J.F., Melleton J., Piantone P. (2015). – Global lithium resources and sustainability issues. In: Lithium Process Chemistry, resources, Extraction, batteries and recycling, Chagnes A., Switowska J., (eds.). Elsevier, 1-40.

Chen C., Lee C.-T.A., Tang M., Biddle K., Sun W. (2020). – Lithium systematics in global arc magmas and the importance of crustal thickening for lithium enrichment. Nature communications, 11, 5313, https://doi.org/10.1038/s41467-020-19106-z

De Silva S.L., Zandt G., Trumball R., Viramonte J.G., Salas G., Jimenez N. (2006). – Large ignimbrite eruptions and volcano-tectonic depressions in the Central Andres: A thermomechanical perspective. Geological Society of London, Special Publications, 269, 47-63.

Ghosh, P., Garzione, C.N., and Eiler, J.M. (2006). – Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science, 311, 511-515.

Godfrey L.V., Chan, L.-H., Alonso R.N., Lowenstein T.K., McDonough W.F., Houston J., Li J., Bobst A., Jordan T.E. (2013). – The role of climate in the accumulation of lithium-rich brine in the Central Andes. Applied Geochemistry, 38, 92-102.

Hartley, A.J., Chong, G., Houston, J., and Mather, A. (2005). – 150 million years of climatic stability: Evidence from the Atacama Desert, northern Chile. Journal of the Geological Society, London, 162, 421-424.

Houston J., Butcher A., Ehren P., Evans K., Godfrey L. (2011). – The evaluation of Brine Prospects and the Requirement for Modifications to Filing Standards. Economic Geology, 106, 1225-1239.

Kesler et al. (2012). – Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geology Reviews, 48, 55-69.

Lόpez Steinmetz R.L., Salvi S., García M.G., Arnold Y.P., Béziat D., Franco G., Constantini O., Cόrdoba F.E., Caffe P.J. (2018). – Northern Puna Plateau-scale survey of Li-brine-type deposits in the Andes of NW Argentina. Journal of Geochemical Exploration, 190, 26-38.

Munk L.A., Hynek S.A., Bradley D.C., Boutt D., Labay K., Jochens H. (2016). – Chapter 14. Lithium Brines: A Global Perspective. Reviews in Economic Geology, 18, 339-365.

Munk L.A., Boutt D.F., Hynek S.A., Moran B.J. (2018). – Hydrogeochemical fluxes and processes contributing to the formation of lithium-enriched brines in a hyper-arid continental basin. Chemical Geology, 493, 37-57.

Orberger B., Rojas W., Millot R., Flehoc C. (2015). – Stables isotopes (Li, O, H) combined with brine chemistry: powerful tracers for Li origins in Salar deposits from the Puna region, Argentina. Procedia Earth and Planetary Science, 13, 307-311.

Risacher, F., Alonso, B., Salazar, C. (2003). – The origin of brines and salts in Chilean salars: a hydrochemical review. Earth-Science Reviews, 63, 249-293.

Schmidt N. (2019). – Genesis and distribution of lithium enriched pore brines at the Salar de Uyuni, Bolivia. Freiberg Online Geoscience, 57, 156 p.

Warren J.K. (2010). – Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth Science Reviews, 98, 217-268.

Zheng, M., Liu X. (2009). – Hydrogeochemistry of Salt Lakes of the Qinghai-Tibet Plateau, China. Aquatic Chemistry, 15, 293-320.



Gisements sédimentaires du lithium (B. Gourcerol)

Obradovic J., Djurdjevic-Colson J., and Vasic, N. (1997). – Phytogenic lacustrine sedimentation – oil shales in Neogene from Serbia Yugoslavia. Journal of Paleolimnology, 18, 351-364.

Rio Tinto (2017). – Notice to ASX: Increase to Jadar Project Mineral Resources, 2 March 2017, 22 p. https://www.riotinto.com/news/releases/Jadar-mineral-resources-increase

Stanley C., Jones G.C., Rumsey M.S., Blake C., Roberts A.C., Stirling J.A.R., Carpenter G.J.C., Whitfield P.S., Grice J.D., Lepage Y. (2007).Jadarite, LiNaSiB3O7(OH), a new mineral species from the Jadar Basin, Serbia. European Journal of Mineralogy, 19, 575-580.

Tourtelot H.A., and Brenner-Tourtelot E.F. (1977). – Lithium, a preliminary survey of its mineral occurrence in flint clay and related rock types in the United States. Energy, 3, 263-272.

Wang D.H., Li P.G., Qu W.J., Yin L.J., Zhao Z., Lei Z.Y., and Wen S.F. (2013). – Discovery and preliminary study of the high tungsten and lithium contents in the Dazhuyuan bauxite deposit, Guizhou, China. Science China. Earth Sciences, 56, 145-152. doi: 10.1007/s11430-012-4504-2

Zhang Y., Zhang, J., Lin, W., Tan, L., Xie, F., Cheng, J. (2020). – Extraction of lithium and aluminum from bauxite mine tailings by mixed acid treatment without roasting. Journal of Hazardous materials, 124044.



Principales minéralisations lithinifères de roches dures : pegmatites et granites à métaux rares, greisens (E. Gloaguen)

Ballouard, C., Poujol, M., Boulvais, P., Branquet, Y., Tartèse, R., Vigneresse, J.-L. (2016). – Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology, 44, 231-234. https://doi.org/10.1130/G37475.1

Brisbin, W.C. (1986). – Mechanics of pegmatite intrusion. Am. Mineral., 71, 644-651.

Bussink, R.W. (1984). – Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geol. Ultraiectina, 33, 1-170.

Černý, P., Blevin, P.L., Cuney, M., London, D., (2005). – Granite-Related Ore Deposits. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.R. (Eds.), Economic Geology - One Hundredth Anniversary Volume 1905-2005. Society of Economic Geologists, Inc., Littleton, CO, USA, p. 337-370.

Černý, P., Ercit, S.T. (2005). – The classification of granitic pegmatites revisited. Can. Mineral., 43, 2005-2026.

Černý, P., London, D., Novák, M. (2012). – Granitic Pegmatites as Reflections of Their Sources. Elements, 8, p. 289-294. https://doi.org/10.2113/gselements.8.4.289

Chappell, B.W., White, A.J.R. (1992). – I- and S-type granites in the Lachlan Fold Belt. Trans. R. Soc. Edinb., 83, 1-26.

Coumou, D., Driesner, T., Geiger, S., Heinrich, C.A., Matthäi, S. (2006). – The dynamics of mid-ocean ridge hydrothermal systems: Splitting plumes and fluctuating vent temperatures. Earth Planet. Sci. Lett., 245, 218-231. https://doi.org/10.1016/j.epsl.2006.02.044

Cuney, M., Marignac, C., Weisbrod, A. (1992). – The Beauvoir topaz-lepidolite albitic granite (Massif Central France). A highly specialized granite with disseminated Sn-Li-Ta-Nb-Be mineralization of magmatic origin. Econ. Geol., 87, 1766-1794.

Dailey, S.R., Christiansen, E.H., Dorais, M.J., Kowallis, B.J., Fernandez, D.P., Johnson, D.M. (2018). – Origin of the fluorine- and beryllium-rich rhyolites of the Spor Mountain Formation, Western Utah. Am. Mineral., 103, 1228-1252. https://doi.org/10.2138/am-2018-6256

Demartis, M., Pinotti, L.P., Coniglio, J.E., D’Eramo, F.J., Tubía, J.M., Aragón, E., Agulleiro Insúa, L.A. (2011). – Ascent and emplacement of pegmatitic melts in a major reverse shear zone (Sierras de Córdoba, Argentina). J. Struct. Geol., 33, 1334-1346. https://doi.org/10.1016/j.jsg.2011.06.008

Deveaud, S. (2015). – Caractérisation de la mise en place des champs de pegmatites à éléments rares de type LCT. Exemples représentatifs de la chaîne Varisque (Thèse). Université d’Orléans, Orléans, France.

Deveaud, S., Guillou-Frottier, L., Millot, R., Gloaguen, E., Branquet, Y., Villaros, A., Pichavant, M., Barbosa Da Silva, D. (2015a). – Innovative and multi-disciplinary approach for discussing the emplacement of Variscan LCT-pegmatite fields, in: Proceedings. Presented at the 13th SGA biennial meeting, 24-27 August 2015, Nancy, France, p. 807-810.

Deveaud, S., Gumiaux, C., Gloaguen, E., Branquet, Y., Deveaud, S., Gumiaux, C., Gloaguen, E., Branquet, Y. (2013). – Spatial statistical analysis applied to rare-element LCT-type pegmatite fields: an original approach to constrain faults-pegmatites-granites relationships. J. Geosci., 58, 163-182. https://doi.org/10.3190/jgeosci.141

Jahns, R.H., 1982. Internal evolution of pegmatite bodies. In: Granitic Pegmatites in Science and Industry, Short Course Handbook. Cerny, P., 293-327.

Jahns, R.H. (1955). – The study of pegmatites. Econ. Geol. 50th anniversary volume, 1025-1130.

Jellinek, A.M., DePaolo, D.J. (2003). – A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull. Volcanol., 65, 363-381. https://doi.org/10.1007/s00445-003-0277-y

Kovalenko, V.I., Kuz’min, M.I., Letnikov, F.A. (1970). – Magmatic origin of lithium and fluorine bearing rare metal granites. Dokl. Akad. Nauk SSSR Earth Sci. Sect., 190, 189-192.

Launay, G. (2018). – Hydrodynamique des systèmes minéralisés péri-granitiques : étude du gisement à W-Sn-(Cu) de Panasqueira (Portugal). Thèse Université d’Orléans, Orléans, France.

Launay, G., Sizaret, S., Guillou-Frottier, L., Gloaguen, E., Pinto, F. (2018). – Deciphering fluid flow at the magmatic-hydrothermal transition: A case study from the world-class Panasqueira W–Sn–(Cu) ore deposit (Portugal). Earth Planet. Sci. Lett., 499, 1-12. https://doi.org/10.1016/j.epsl.2018.07.012

Linnen, R.L., Cuney, M. (2005). – Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: Rare-Element Geochemistry and Mineral Deposits, Linnen R.L. and Samson I.M. Geological Association of Canada Short Course Notes, p. 46-68.

London, D. (2008). – Pegmatites. The Canadian Mineralogist Special Publication. Mineralogical Association of Canada/Association minéralogique du Canada, Québec.

London, D. (2005). – Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos, 80, 281-303.

Lulzac, Y., Apolinarski, F. (1986). – Inventaire du territoire métropolitain. Les minéralisations à étain, tantale et lithium de Tréguennec (Finistère). État des connaissances au 31 mars 1986 (Rapport BRGM No. 86 DAM 011 OP4). BRGM, Orléans, France.

Norton, J.J. (1973). – Lithium, cesium, and rubidium—the rare alkali metals (United States Mineral Resources No. 820), USGS Prof. Pap. USGS.

Raimbault, L., Burnol, L. (1998). – The Richemont rhyolite dyke, Massif Central, France; a subvolcanic equivalent of rare-metal granites. Can. Mineral., 36, 265-282.

Silva, D., Lima, A., Gloaguen, E., Gumiaux, C., Noronha, F., Deveaud, S. (2018). – Spatial Geostatistical Analysis Applied To The Barroso-Alvao Rare-Elements Pegmatite Field (Northern Portugal). In: GIS – An Overview of Applications, Frontiers in Information Systems. Bentham Science Publishers, p. 64-101.

Tindle, A.G., Breaks, F.W. (1998). – Oxide minerals of the separation rapids rare-element granitic pegmatite group, northwestern Ontario. Can. Mineral., 36, 609-635.

Yamato, P., Duretz, T., May, D.A., Tartèse, R. (2015). – Quantifying magma segregation in dykes. Tectonophysics, 660, 132-147. https://doi.org/10.1016/j.tecto.2015.08.030

Yin, L., Pollard, P.J., Shouxi, H., Taylor, R.G. (1995). – Geologic and geochemical characteristics of the Yichun Ta-Nb-Li deposit, Jiangxi Province, South China. Econ. Geol., 90, 577-585. https://doi.org/10.2113/gsecongeo.90.3.577



Aperçu succinct des procédés minéralurgiques impliqués dans la production de lithium (B. Gourcerol, J. Melleton)

Archarnbault M., Quebec., Quebec., Mac-Ewan J.U., Montreal, Quebec, Olivier C.A. (1962). – Method of Producing Lithium Carbonate from Spodumene. US Patent No. 3017243.

Ellestad R.B., Ileute K.M., Minn M. (1950). – Method of Extracting Lithium Values from Spodumene Ores; US Patent No. 2516109.

European Lithium (2018). – ASX Release: European Lithium completes positive PFS, 50 p.

European Metals (2017).– ASX Release: Preliminary feasibility study confirms Cinovec as potentially low coast lithium carbonate producer, 28 p.

Keliber (2016). – Pre-feasibility study F13272, Keliber Lithium project, 215 p.

Labbé J.F., Daw G. (2012).– Panorama 2011 du marché du lithium. Rapport public BRGM/RP-61340-FR ; BRGM, 154 p.

Nicholson C.M. (1946).– Production of Lithium Compounds. US Patent No. 2413644.

Ollivier P., Carly R., Lorang M. (1978). – Extraction chimique du lithium, de la lepidolite. Projet Echassières, 78 SGN 615 MIN, 39 p.

Sitando O., Crouse P.L. (2012). – processing of a Zimbabwean petalite to obtain lithium carbonate. International journal of mineral processing, 102, 45-50.

Dessemond, C., Soucy, G., Harvey, J.-P., Ouzilleau, P. (2020). – Phase Transitions in the α–γ–β Spodumene Thermodynamic System and Impact of γ-Spodumene on the Efficiency of Lithium Extraction by Acid Leaching. Minerals, 10, 519. https://doi.org/10.3390/min10060519