Bibliographie fournie par les auteurs des articles - Géochronique n°134 : Regards sur la Paléobotanique

 

134Émergence du concept de fossile, origine et développement de la Paléobotanique (J. Broutin)

Brongniart A. (1881). – Description des graines fossiles silicifiées du terrain houiller de Saint-Étienne, Masson Ed. Paris.

Zeiller C.R. (1905). – Une nouvelle classe de Gymnospermes : les Ptéridospermées, Armand Colin Ed., Paris.

Carbonifère, naissance de la paléobotanique moderne (J. Broutin)

Jongmans W. J. (1952). – Some problems on Carboniferous Stratigraphy. Comptes Rendus du 3ème Congrès de Stratigraphie et de Géologie du Carbonifère, Heerlen 1952, p. 295-306.

Archéobotanique (M. Tengberg)

Cappers R.T.J., Neef R. (2012). – Handbook of Plant Palaeoecology. Groningen Archaeological Studies, 19, ed. Barkhuis, 475 p.

Jacomet S., Kreuz A. (1999). – Archäobotanik. Verlag Eugen Ulmer, Stuttgart.

Paléoflores et climat (A. Boura, D. De Franceschi et R. Thomas)

Bailey I.W. & Sinnott E.W. (1916). – The climatic distribution of certain types of angiosperm leaves. American Journal of Botany, 3, p. 24-39.

Lindorf H. (1994). – Eco-anatomical wood features of species from a very dry tropical forest. IAWA Journal, 15(4), p. 361-374.

Bertaudière V. (1999). – Dendroécologie du Genévrier thurifère (Juniperus thurifera L.) dans la haute montagne méditerranéenne (Haut Atlas, Maroc) et dans une station xérothermique des Pyrénées centrales (France). Thèse, Université Paul Sabatier, Toulouse, 234 p.

Mosbrugger V. & Utescher T. (1997). – The coexistence approach – a method for quantitative reconstructions of Tertiary terrestrial paleoclimate data using plants fossils. Palaeogeography Palaeoclimatology Palaeoecology, 134, p. 61-86.

Pons D., Henry L. & Henry R. (1992). – Bois de conifères de l’albien inférieur de Mesnil-Saint-Père (Aube). Association géologique auboise. Bulletin annuel, 14, p. 35-52.

Wolfe J. A. (1971). – Tertiary climatic fluctuations and methods of analysis of Tertiary floras. Palaeogeography Palaeoclimatology Palaeoecology, 9, p. 27-57.

Wolfe J. A. (1978). – A Paleobotanical Interpretation of Tertiary climates in the Northern Hemisphere. American scientist, 66(6), p. 694-703.

Wolfe J. A. (1993). – A method of obtaining climatic parameters from leaf analysis assemblages. U.S. Geological Survey Bulletin, 2040, 71 p.

Biogéochimie des plantes fossiles (T.T. Nguyen Tu)

D'Angelo JA, Zodrow EL (2015). – Chemometric study of structural groups in Medullosalean foliage (Carboniferous, fossil Lagerstätte, Canada): Chemotaxonomic implications. International Journal of Coal Geology, 138, p. 42-54.

Ewbanks G.D., Edwards D., Abbott G.D. (1996). – Chemical characterization of Lower Devonian vascular plant. Organic Geochemistry, 25, p. 461-473.

Gröcke D.R. (1997). – Carbon-isotope stratigraphy of terrestrial plant fragments in the early Cretaceous from south-eastern Australia. Dinofest International. D. L. Wolberg, E. Stump and G. D. Rosenberg. Philadelphia, Academy of Natural Sciences, p. 457-461.

Gupta N.S., Yang H., Leng Q., Briggs D.E.G., Cody G.D., Summons R.E. (2009). – Diagenesis of plant biopolymers: Decay and macromolecular preservation of Metasequoia. Organic Geochemistry, 40, p. 802-809.

Lockheart M.J., van Bergen P.F., Evershed R.P. (2000). – Chemotaxonomic classification of fossil leaves from the Miocene Clarkia lake deposit, Idaho, USA based on n-alkyl lipid distribution and principal component analyses. Organic Geochemistry, 31, p. 1223-1246.

Logan G.A., Smiley C.J., Eglinton G. (1995). – "Preservation of leaf waxes in association with their source tissues, Clarkia, northern Idaho, USA." Geochimica et Cosmochimica Acta, 59, p. 751-763.

Nguyen Tu T.T., Bocherens H., Mariotti A., Baudin F., Pons D., Broutin J., Derenne S. & Largeau C. (1999). – Ecological distribution of Cenomanian terrestrial plants based on 13C/12C ratios. Palaeogeography, Palaeoclimatology, Palaeoecology, 145, p. 79-93.

Nguyen Tu T.T., Kvaček J., Uličný D., Bocherens H., Mariotti A. & Broutin J. (2002). – Isotope reconstruction of plant palaeoecology: Case study of Cenomanian floras from Bohemia. Palaeogeography, Palaeoclimatology, Palaeoecology, 183, p. 43-70.

Nguyen Tu T.T., Derenne S., Largeau C., Mariotti A. & Bocherens H. (2003). – Comparison of leaf lipids from a fossil ginkgoalean plant and its extant counterpart at two degradation stages: diagenetic and chemotaxonomic implications. Review of Palaeobotany and Palynology, 124, p. 63-78.

Nguyen Tu T.T., Kürschner W.M., Schouten S., van Bergen P. (2004). – Leaf carbon isotope composition of fossil and extant oaks grown under differing atmospheric CO2 levels. Palaeogeography, Palaeoclimatology, Palaeoecology, 212, p. 199-213.

Otto A., Simoneit B.R.T., Wilde V., Kunzmann L., Püttmann W. (2002). – Terpenoid composition of three fossil resins from Cretaceous and Tertiary conifers. Review of Paleobotany and Palynology, 120, p.203-213.

Tappert R., McKellar R.C., Wolfe A.P., Tappert M.C., Ortega-Blanco J., Muehlenbachs K. (2013). – Stable carbon isotopes of C3 plant resins and ambers record changes in atmospheric oxygen since the Triassic. Geochimica et Cosmochimica Acta, 121, p. 240-262.

Wolfe A.P., Tappert R., Muehlenbachs K., Boudreau M., McKellar R.C., Basinger J.F., Garrett A. (2009). – A new proposal concerning the botanical origin of Baltic amber. Proceedings of the Royal Society of London, B 276, p. 3403-3412.

Glossopteris, paléophytogéographie, paléogéographie et dérive des continents (J. Broutin)

Wegener A. (1924). – La Genèse des continents et des océans. Traduction de la 3e éd. allemande par M. Reichel. Albert Blanchard, Paris.

Les phytolithes (A. Novello et R. Thomas)

Eichhorn B., Neumann K., Garnier A. (2010). – Seed phytoliths in West African Commelinaceae and their potential for palaeoecological studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 298, p. 300-310.

Henry A.G., Brooks A.S., Piperno D.R. (2014). – Plant foods and the dietary ecology of Neanderthals and early modern humans. Journal of Archaeological Scicence, 69, p. 44-54.

Hodson M.J., White P.J., Mead A., Broadley M.R. (2005). – Phylogenetic variation in silicon composition of plants. Annals of Botany, 96, p. 1027-1046.

Madella M., Alexandre A., Ball T. (2005). – International Code for Phytolith Nomenclature 1.0. Annals of Botany, 96, p. 253-260.

Mercader J., Bennett T., Esselmont C., Simpson S., Walde D. (2009). – Phytoliths in woody plants from the Miombo woodlands of Mozambique. Annals of Botany, 104, p. 91-113.

Novello A., Barboni D., Berti-Equille L., Mazur J.-C., Poilecot P., Vignaud P. (2012). – Phytolith signal of aquatic plants and soils in Chad, Central Africa. Review of Palaeobotany and Palynology, 178, p. 43-58.

Novello A., Lebatard A.-E., Moussa A., Barboni D., Sylvestre F., Bourlès D.L., Paillès C., Buchet G., Decarreau A., Duringer P., Ghienne J.-F., Maley J., Mazur J.-C., Roquin C., Schuster M., Vignaud P. (2015). – Diatom, phytolith, and pollen records from a 10Be/9Be dated lacustrine succession in the Chad basin: Insight on the Miocene–Pliocene paleoenvironmental changes in Central Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 430, p. 85-103.

Piperno D.R. (2006). – Phytoliths. A Comprehensive Guide for Archaeologists and Paleoecologists. AltaMira Press (Rowman & Littlefield), Oxford, 247 p.

Piperno D.R., Sues H.-D. (2005). – Dinosaurs Dined on Grass. Science, 310, p. 1126-1128.

Prasad V., Strömberg C.A.E., Alimohammadian H., Sahni A. (2005). – Dinosaur Coprolites and the Early Evolution of Grasses and Grazers. Science, 310, p. 1177-1180.

Prasad V., Strömberg C.A.E., Leaché A.D., Samant B., Patnaik R., Tang L., Mohabey D.M., Ge S., Sahni A. (2011). – Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae. Nature Communications, 2, 480.

Prychid C.J., Rudall P.J. and M. Gregory M. (2004). – Systematics and Biology of Silica Bodies in Monocotyledons. Botanical Review, 69(4), p.377-440.

Rossouw L., Scott L. (2011). – Phytoliths and Pollen, the Microscopic Plant Remains in Pliocene Volcanic Sediments Around Laetoli, Tanzania, in: Harrison, T. (Ed.), Paleontology and Geology of Laetoli: Human Evolution in Context. Springer, New York, p. 201-215.

Rovner I. (1971). – Potential of opal phytoliths for use in paleoecological reconstruction. Quaternary Research, 1, p. 343-359.

Strömberg C.A.E. (2003). – The origin and spread of grass-dominated ecosystems during the Tertiary of North America and how it relates to the evolution of hypsodonty in equids, PhD Thesis. University of California, Berkeley, 779 p.

Taugourdeau-Lantz J., Laroche J., Lachkar G., Pons D. (1976). – La silice chez les végétaux : problème des phytolithaires. Travaux du Laboratoire de Micropaléontologie, 5., p. 255-303. Publication inédite de l’Université Paris VI.

Thomas R. et De Franceschi D. (2013). – Palm stem anatomy and computer-aided identification: The coryphoideae (arecaceae). American Journal of Botany, 100(2), p. 289-313.

Les angiospermes et l’étude des fossiles de l’appareil reproducteur (D. De Franceschi)

Crane P.R. & Herendeen P.S. (1996). – Cretaceous floras containing angiosperm flowers and fruits from eastern North America. Review of Palaeobotany and Palynology, 90(3), p. 319-337.

Collinson M.E. (1983). – Fossil plants of the London Clay. Palaeontological association, field guide,n°1, p. 1-121.

De Franceschi D., Le Gall C., Escarguel G., Hugueney M., Legendre S., Simon-Coinçon R., Pélissié T. & Sigé B. (2006). – Une paléoflore des phosphatières karstiques du Quercy (Sud-Ouest France): première découverte, résultats et perspectives. Strata Série 1, vol. 13, p. 97-101.

Friis E.M. (1983). – Upper Cretaceous (Senonian) floral structures of juglandalean affinity containing Normapolles pollen. Review of Palaeobotany and Palynology, 39(1), p. 161-188.

Friis E. M., Marone F., Pedersen K.R., Crane P.R. and Stampanoni M. (2014). Three-dimensional visualisation of fossil flowers, fruits, seeds and other plant remains using synchrotron radiation X-ray tomographic microscopy (SRXTM): New insights into Cretaceous plant diversity. Journal of Paleontology,88, p. 684-701.

Friis E.M., Pedersen K.R. & Crane P.R. (2001). – Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature, 410(6826), p. 357-360.

Friis E.M., Pedersen K.R. & Crane P.R. (2006). – Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2), p. 251-293.

Herendeen P.S., Crepet W.L., Nixon K.C. (1994). – Fossil flowers and pollen ofLauraceae from the Upper Cretaceous of New Jersey. Plant Systematics and Evolution, 189(1-2), p. 29-40.

Manchester S.R. (1994). – Fruits and Seeds of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon. Palaeontographica Americana, 58, p. 1-205.

Nel A., De Plöeg G., Dejax J., Dutheil D., De Franceschi D., Gheerbrant E., Godinot M., Hervet S., Menier J.-J., Augé M., Bignot G., Cavagnetto C., Duffaud S., Gaudant J., Hua S., Jossang A., De Lapparent De Broin F., Pozzi J.-P., Paicheler J.-C., Beuchet F., Rage J.-C. (1999). – Un gisement sparnacien exceptionnel à plantes, arthropodes et vertébrés (Éocène basal, MP7): Le Quesnoy (Oise, France). Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 329(1), p. 65-72.

Reid E.M. & Chandler M.E.J. (1933). – London clay flora: British Mus. (Natural History), 561 p.

Smith T., Quesnel F., De Plöeg G., De Franceschi D., Metais G. et al. (2014). – First Clarkforkian equivalent Land Mammal Age in the latest Paleocene basal Sparnacian facies of Europe: fauna, Flora, paleoenvironment and (bio) stratigraphy. PloS one, 9(1), e86229. DOI: 10.1371/journal.pone.0086229

Brûler pour être… fossilisé. Pour les plantes… le feu ça crée ! (J. Broutin)

Scott A.C., Bowman D.J.M.S., Bond W.J., Pyne S.J. and Alexander M. (2013). – Fire on Earth: An Introduction. J. Wiley and Sons.

La technique de dépelliculation et ses applications (J. Galtier)

Combourieu N., Galtier J. (1985). – Nouvelles observations sur Polypterospermum, Polylophospermum, Colpospermum et Codonospermum, ovules de Ptéridospermales du Carbonifère supérieur français.Palaeontographica B, 196, p. 1-29.

Galtier J., Phillips T.L. (1999). – The acetate peel techniques. In: Jones, T.P. & Rowe, N.P. (eds) Fossil Plants and Spores: modern techniques. Geological Society, Miscellaneous Titles, London, p. 67-70.

Holmes J.C. (1977). – The Carboniferous fern Psalixochlaena cylindrica as found in Westphalian A coal-balls from England. Part I. Structure and development of the cauline system. Palaeontographica B, 164, p. 33-75.

Holmes J.C., Lopez J. (1986). – The Disappearing Peel Technique: an improved method for studying permineralized plant tissues. Palaeontology, 29, p. 787-808.

Joy K.W., Willis A.J., Lacey W.S. (1956). – A rapid cellulose peel technique in palaeobotany. Annals of Botany, 20, p. 635-637.

Phillips T.L., Avcin M.J., Berggren D. (1976). – Fossil peat from the Illinois Basin. A guide to the study of coal-balls of Pennsylvanian age. Illinois State Geological Survey Educational Series, 11, p.1-39.

Une flore dévonienne à conservation exceptionnelle : le gisement de Rhynie (Écosse) ( J. Broutin)

Kerp H., Trewin Nigel H. and Hass H. (2003). – New gametophytes from the Early Devonian Rhynie chert. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94, p. 411-428.

The Rhynie chert Learning resource site : www.abdn.ac.uk/rhynie/intro.htm (remarquable site web avec bibliographie de « University of Aberdeen ».

Palaeobotanical Research Group, University Münster : www.uni-muenster.de/GeoPalaeontologie/Palaeo/Palbot/erhynie.html

Encart : Émergence et diversification des plantes terrestres (J. Broutin)

Ge Sun, David L. Dilcher, Shaoling Zheng, Zhekun Zhou (1998). – In Search of the First Flower: A Jurassic Angiosperm, Archaefructus, from Northeast China. Science, 282, p. 1692-1695.

Ge Sun, Qiang Ji, David L. Dilcher, Shaolin Zheng, Kevin C. Nixon, Xinfu Wang (2002). – Archaefructaceae, a New Basal Angiosperm Family. Science, 296, p. 899-904.

Steemans Ph, Le Hérissé A., Melvin J., Miller Merrel A. , Parris F., Verniers J., Wellmann Charles H. (2009). – Origin and radiation of the Earliest Vascular Land Plants. Science, 324, p. 353.

Les premiers arbres (B. Meyer-Berthaud)

Algeo T.J., Scheckler S.E. (1998). – Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of the Royal Society of London, B 353, p. 113-130.

Arnold C.A. (1931). – On Callixylon newberryi (Dawson) Elkins et Wieland. Contributions from the Museum of Paleontology University of Michigan, 3, p. 207-232.

Cai C., Chen L. (1996). – On a Chinese Givetian lycopod, Longostachys latisporophyllus Zhu, Hu and Feng, emend.: its morphology, anatomy and reconstruction. Palaeontographica, Abt B., 238, p. 1-43.

Giesen P., Berry C.M. (2013). Reconstruction and Growth of the Early Tree Calamophyton (Pseudosporochnales, Cladoxylopsida) Based on Exceptionally Complete Specimens from Lindlar, Germany (Mid-Devonian): Organic Connection of Calamophyton Branches and Duisbergia Trunks. International Journal of Plant Sciences, 174, p. 665-686.

Meyer-Berthaud B., Wendt J., Galtier J. (1997). – First record of a large Callixylon trunk from the Late Devonian of Gondwana. Geological Magazine, 134, p. 847-853.

Mintz J.S., Driese S.G., White J.D. (2010). – Environmental and ecological variability of Middle Devonian (Givetian) forests in Appalachian basin paleosols, New York, United States. Palaios, 25, p. 85-96.

Schweitzer H.-J. (1967). – Die Oberdevon-Flora der Bäreninsel. I, Pseudobornia ursina Nathorst. Palaeontographica, B 120, p. 116-137.

Senkevitsch M.A., Jurina A.L., Arkhangelskaya A.D. (1993). – On fructifications, morphology and anatomy of Givetian lepidophytes in Kazakhstan (USSR). Palaeontographica, B 230, p. 43-58.

Stein W.E., Mannolini F., Hernick L.V., Landing E., Berry C.M. (2007). – Giant cladoxylopsid trees resolve the enigma of the Earth/'s earliest forest stumps at Gilboa. Nature, 446, p. 904-907.

Stein W.E., Berry C.M., Hernick L.V., Mannolini F. (2012). – Surprisingly complex community discovered in the mid-Devonian fossil forest at Gilboa. Nature, 483, p. 78-81.

Wang Q., Hao S.-G., Wang D.-M., Wang Y., Denk T. (2003). – A Late Devonian arborescent lycopsid Sublepidodendron songziense Chen emend. (Sublepidodendraceae Kräusel et Weyland 1949) from China, with a revision of the genus Sublepidodendron (Nathorst) Hirmer 1927. Rev. Palaeobot. Palynol., 127, p. 269-305.

Xu H.-H., Wang Y., Wang Q. (2012). – A new homosporous, arborescent lycopsid from the Middle Devonian of Xinjiang, Northwest China. Palaeontology, 55, p. 957-966.

Les plantes et les grandes extinctions (A. Boura et R. Thomas)

Barash M.S. (2014). – Environmental conditions of the mass extinction of marine biota at the end of the Ordovician. Doklady Akademii Nauk, 456(6), p. 680-683.

Cascales-Miñana B. & Cleal C.J. (2013). – The plant fossil record reflects just two great extinction events. Terra Nova, 26(3), p. 195-200.

De Wever P., David B., Neraurdeau D. (2010). – Paléobiosphère : regards croisés en sciences de la Vie et de la Terre. SGF/Vuibert, Paris, 816 p.

Lenton T.M., Crouch M., Johnson M., Piers N., Dolan L. (2012). – Firsts plants cooled the Ordovician. Nature Geosciences, 5, p. 86-89.

Lethiers F. (1998). – Évolution de la biosphère et événements géologiques. Editions scientifiques GB - Gordon and Breach, 331 p.

La sortie des eaux des végétaux (J. Broutin)

Wettstein R. (1901). – Handbuch des Systematische Botanik, Franz Deuticke, Leipzig & Wien, vol. 1, 201 p.