Bibliographie du dossier - Géochronique n°139

 

Volcans et curiosités géologiques en Chine (J.-M. Bardintzeff, J. Boyer, S. Chermette et J. Monteillet)

 

Bardintzeff J.M. (2015). – Tout savoir sur les volcans du monde, séismes et tsunamis. 2e édition, Orphie, Chevagny-sur-Guye, 160 p.

Bardintzeff J.M. (2016). – Volcanologie. 5e édition, Dunod, Paris, 336 p. + 16 p. couleur hors texte.

Horn S., Schmincke H.U. (2000). – Volatile emission during the eruption of Baitoushan Volcano (China/North Korea) ca. 969 AD. Bull. Volc., 61, 8, 537-555.

Lei J., Xie F., Fan Q., Santosh M. (2013). – Seismic imaging of the deep structure under the Chinese volcanoes: An overview. Physics Earth Planet. Interiors, 224, p.104-123. http://www.sciencedirect.com/science/article/pii/S0031920113001222 - cor1

Wei H., Liu G., Gill J. (2013). – Review of eruptive activity at Tianchi volcano, Changbaishan, northeast China: implications for possible future eruptions. Bull Volc, 75, 4, p. 706.

Wei H., Sparks R.S.J., Liu R., Fan Q., Wang Y., Hong H., Zhang H., Chen H., Jiang C., Dong J., Zheng Y., Pan Y. (2003). – Three active volcanoes in China and their hazards. J. Asian Earth. Sci., 21, 5, p. 515-526.

Xu J., Pan B., Liu T., Hajdas I., Zhao B., Yu H., Liu R., Zhao P. (2013). – Climate impact of the Millennium eruption of Changbaishan volcano in China: New insights from high-precision radiocarbon wiggle-match dating. Geophys. Res. Lett., 40, 1, p. 54-59.

 

 

Platinoïdes : des éléments à part en cosmochimie et géochimie (J.-P. Lorand)

 

Becker H., Horan M.F., Walker R.J., Gao S., Lorand J.-P., Rudnick R.L. (2006). – Highly siderophile element composition of the Earth’s primitive upper mantle: Constraints from new data on peridotite massifs and xenoliths. Geochim Cosmochim Acta, 70, p. 4528-4550

Brandon, A.D., Puchtel I.S., Walker, R.J., Day, J.M.D., Irving A.J., Taylor, L.A. (2012). – Evolution of the martian mantle inferred from the 187Re/187Os isotope and highly siderophile element abundance systematics of shergottite meteorites. Geochim Cosmochim Acta, 76, p. 206-235.

Day, J.M.D., Walker, R.J., Quin Lipin, Rumble D. III (2012). – Late accretion as a natural consequence of planetary growth. Nature Geoscience, 5(9), p. 614-617.

Day J.M.D., Walker, R.J. (2015). – Highly siderophile element depletion in the Moon. Earth Planet. Sci. Letters, 423, p. 114-124.

Fischer-Gödde M., Becker H., Wombacher F. (2010). – Rhodium, gold and other highly siderophile element abundances in chondritic meteorites. Geochim Cosmochim Acta 74, p. 356-379.

Gannoun A., Burton K.W., Day J.M.D., Harvey J., Schiano P., Parkinson I. (2016). – Highly siderophile element and Os isotope systematics of volcanic rocks at divergent and convergent plate boundaries and in intraplate settings. Rev Mineral Geochem, 81, p. 651-724.

Hewins, R.J., Bourot-Denise, M., Zanda, B., Leroux, H., Barrat, J.-A., Humayun, M., Göpel, C., Greenwood, R.C., Franchi, I.A., Pont, S., Lorand, J.-P., F., Cournède, C., Gattaceca, J., Rochette, P., Kuga, M., Marrochi, Y., Marty, B., (2014). – The Paris meteorite, the less altered CM chondrite so far. Geochim. Cosmochim. Acta, 124, p. 190-222.

Horan M.F., Walker, R.J., Morgan, J.W., Grossman N.J. And Rubin, A. (2003). – Highly siderophile elements in chondrites. Chem. Geol., 196, p. 5-20.

Lorand, J.-P., Luguet, A. and Alard, O. (2008). – Platinum-group elements: a new set of key tracers for the Earth’s interior. Elements, Aout 2008, 4, p. 247-253.

Lorand, J.P., Luguet, A. (2016). – Chalcophile/siderophile elements in mantle rocks: trace elements controlled by trace minerals. Review in Mineralogy and Geochemistry, 81, p. 441-488.

Liu J., Sharp M., Ash R.D., Kring D.A., Walker, R.J. (2015). – Diverse impactors in Apollo 15 and 16 impact melt rocks: Evidence from osmium isotopes and highly siderophile elements. Geochim. Cosmochim. Acta, 155, p. 122-153.

Mann U., Frost D.J., Rubie D.C., Becker H., Audétat A. (2012). – Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and temperatures – Implications for the origin of highly siderophile element concentrations in the Earth’s mantle. Geochim Cosmochim Acta, 84, p.593-613

Mullane, E., Alard, O., Gounelle, M., Russell S. (2004). – Laser-ablation ICP-MS study of IIIAB irons and pallasites: constraints on the behaviour of highly siderophile elements during and after planetesimal core formation. Chem. Geol., 208, p. 5-23.

Puchtel I.S., Walker R.J., James O.B., Kring D.A. (2008). – Osmium isotope and highly siderophile element systematics of lunar impact melt rocks: Implications for the late accretion history of the Moon and Earth. Geochim Cosmochim Acta, 72, p. 3022-3042.

Riches A.J.V., Days, J.M.D., Walker R.J., Simonetti A., Liu Y., Neal C.R. And Taylor, L.A. (2012). – Rhenium-osmium isotope and highly-siderophile element abundance systematics of angrite meteorites. Earth Planet. Sci. Lett., 353-354, p. 208-218.

Rudnick R.L. and Gao S. (2014). – Composition of the Continental Crust. In: Holland H. & Turekian K., Treatise on Geochemistry 2nd Edition, Chapter 4.1, p. 1-64.

 

 

Ettringite cimentaire et analogues naturels (V. Thiéry)

 

Antao, S. M., Duane, M. J. & Hassan, I. (2002). – DTA, TG and XRD studies of sturmanite and ettringite. The Canadian Mineralogist, 40, p. 1403-1409.

Anthony, J. W., Bideaux, R. A., Bladh, K. W. & Nichols, M. C. (n.d.). – Handbook of Mineralogy, Mineralogical Society of America, Chantilly, VA 20151-1110, USA. http://www.handbookofmineralogy.org/.

Atabek, R., Bouniol, P., Vitorge, P., Le Bescop, P. & Hoorelbeke, J. M. (1992). – Cement use for radioactive waste embedding and disposal purposes. Cement and Concrete Research, 22, p. 419-429.

Bannister, F. A., Hey, M. H. & Bernal, J. (1936). – Ettringite from Scawt Hill, Co. Antrim. Mineralogical Magazine, 24, p. 324-329.

Bertrand, E. (1881). – Étude optique de différents minéraux. Bulletin de la Société Française de Minéralogie, 2, p. 34-38.

Bonaccorsi, E., Merlino, S. & Taylor, H. F. W. (2004). – The crystal structure of jennite, Ca9Si6O18(OH)6·8H2O. Cement and Concrete Research, 34, p. 1481-1488.

Burnham, C. W. (1959). – Contact metamorphism of magnesian limestones at Crestmore, California. Bulletin of the Geological Society of America, 70, p. 879-920.

Chollet, P. & Devouard, B. (2013). – La mine de cuivre et plomb des Rats, le Crozet (Loire). Le règne minéral, 109, p. 6-46.

Chukanov, N. V., Britvin, S. N., Van, K. V., Möckel, S. & Zadov, A. E. (2012). – Kottenheimite, Ca3Si(OH)6(SO4)2·12H2O, a new member of the ettringite group from the Eifel area, Germany. The Canadian Mineralogist, 50, p. 55-63.

Chukanov, N. V., Kasatkin, A. V., Zubkova, N. V., Britvin, S. N., Pautov, L. A., Pekov, I. V., Varlamov, D. A., Bychkova, Y. V., Loskutov, A. B. & Novgorodova, E. A. (2015). – Tatarinovite,IMA2015-055.CNMNC Newsletter No. 27, October 2015, page 1227. Mineralogical Magazine, 79, p. 1223-1230.

Courtois, A., Dusausoy, Y., Laffaille, A. & Protas, A. (1968). – Étude préliminaire de la structure cristalline de l’ettringite. Comptes rendus de l’académie des Sciences1, 266, p. 1911-1913.

Dunn, P. J., Peacor, D. R., Leavens, P. B. & Baum, J. L. (1983). – Charlesite, a new mineral of the ettringite group, from Franklin, New Jersey. American Mineralogist, 68, p. 1033-1037.

Gastaldi, D., Canonico, F. & Boccaleri, E. (2009). – Ettringite and calcium sulfoaluminate cement: Investigation of water content by near-infrared spectroscopy. Journal of Materials Science, 44, p. 5788-5794.

Gatel, P., Žáček, V., Kruszewski, Ł., Devouard, B., Thiéry, V., Eytier, C., Eytier, J.-R., Favreau, G., Vigier, J. & Stracher, G. B. (2015). – Combustion Mineralogy and Petrology of Oil-Shale Slags in Lapanouse, Sévérac-le-Château, Aveyron, France: Analogies with Hydrocarbon Fires. In Coal and Peat Fires: a Global Perspective, Stracher, G. B., Sokol, E. & Prakash, A. (Eds.), pp. 681–742. Boston: Elsevier.

Gaudefroy, C. & Permingeat, F. (1965). – La jouravskite, une nouvelle espèce minérale. Bulletin de la Société Française de Minéralogie, 88, p. 254-262.

De Goër de Herve, A., Camus, G., Miallier, D., Sanzelle, S., Falguères, C., Fain, J., Montret, M. & Pilleyre, T. (1993). – Le puy de Gravenoire et ses coulées, dans l’agglomération de Clermont-Ferrand (Massif central français) : un modèle inhabituel d'avalanche de débris, déclenchée par une éruption strombolienne en climat périglaciaire. Bulletin de la Société Géologique de France, 164, p. 783-793.

Goetz-Neunhoeffer, F. & Neubauer, J. (2006). — Refined ettringite (Ca6Al2(SO4)3(OH)12∙26H2O) structure for quantitative X-ray diffraction analysis. Powder Diffraction, 21, p. 4-11.

Goetz-Neunhoeffer, F., Neubauer, J. & Schwesig, P. (2006). – Mineralogical characteristics of Ettringites synthesized from solutions and suspensions. Cement and Concrete Research, 36, p. 65-70.

Gougar, M. L. D., Scheetz, B. E. & Roy, D. M. (1996). – Ettringite and C-S-H portland cement phases for waste ion immobilization: A review. Waste Management, 16, p. 295-303.

Grapes, R. (2011). – Pyrometamorphism. Springer

Gross, S. (1977). — The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, p. 1-80.

Gross, S. (1980). Bentorite. A new mineral from the Hatrurim area, west of the Dead Sea, Israel. Israel Journal of Earth Sciences, 29, p. 81-84.

Grünhagen, H. & Mergoil, J. (1963). – Découverte d’hydrocalumite et afwillite associées à l'ettringite dans les porcelanites de Boisséjour près Ceyrat (Puy-de-Dôme). Bulletin de la Société Française de Minéralogie, 86, p. 149-157.

Gutzmer, J. & Beukes, N. J. (1996). – Mineral paragenesis of the Kalahari manganese field, South Africa. Ore Geology Reviews, 11, p. 405-428.

Jiménez, A. & Prieto, M. (2015). – Thermal stability of ettringite exposed to atmosphere: implications for the uptake of harmful ions by cement. Environmental Science & Technology, 49, p. 7957-7964.

Kolodny, Y. (1979). –  –Natural cement factory: a geological story. In Cement Production and Use, J.Skalny (Ed.), p. 203–216.

Komatsu, R., Mizukoshi, N., Makida, K. & Tsukamoto, K. (2009). In-situ observation of ettringite crystals. Journal of Crystal Growth, 311, p. 1005-1008.

Kuzel, H.-J. & Baier, H. (1996). – Hydration of calcium aluminate cements in the presence of calcium carbonate. European Journal of Mineralogy, 8, p. 129-142.

Lehmann, J. (1874). – Über den ettringit, ein neues mineral, in Kalkeinschlüssen der Lava von Ettringen (Laacher Gebiet). Neues Jahrbuch für Mineralogie, Geologie und Palaontologie, p. 273-275.

Malinko, S. V., Chukanov, N. V., Dubinchuk, V. T., Zadov, A. E. & Koporulina, E. V. (2001). – Buryatite Ca3(Si, Fe3+, Al)[SO4][B(OH)4](OH)5O·12H2O, a new mineral. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva, 130, p. 72-78.

McDonald, A. M., Peterson, O. V., Gault, R. A., Johnsen, O., Niedermayr, G., Brandstätter, F. & Giester, G. (2001). – Micheelsenite, (Ca,Y)3Al(PO3OH,CO3)(CO3)(OH)6·12H2O, a new mineral from Mont Saint–Hilaire, Quebec, Canada and the Nanna pegmatite, Narsaarsuup Qaava, South Greenland. Neues Jahrbuch Fur Mineralogie-Monatshefte, p. 337-351.

Mehta, P. K. (1986). – Concrete: structure, properties and materials. Prentice-Hall, 450 p.

Meier, M. R. & Plank, J. (2016). – Crystal growth of [Ca3Al(OH)6·12H2O]2·(SO4)3·2H2O (ettringite) under microgravity: On the impact of anionicity of polycarboxylate comb polymers. Journal of Crystal Growth, 446, p. 92-102.

Meier, M. R., Sarigaphuti, M., Sainamthip, P. & Plank, J. (2015). – Early hydration of Portland cement studied under microgravity conditions. Construction and Building Materials, 93, p. 877-883.

Merlino, S. & Orlandi, P. (2001). – Carraraite and zaccagnaite, two new minerals from the Carrara marble quarries: their chemical compositions, physical properties, and structural features. American Mineralogist, 86, p. 1293-1301.

Mertz, D. F., Löhnertz, W., Nomade, S., Pereira, A., Prelević, D. & Renne, P. R. (2015). – Temporal–spatial evolution of low-SiO2 volcanism in the Pleistocene West Eifel volcanic field (West Germany) and relationship to upwelling asthenosphere. Journal of Geodynamics, 88, p. 59-79.

Michaelis, W. (1892). – Der Zementbazillus. Tonindustrie Zeitung, 16, p. 105-106.

Momma, K. & Izumi, F. (2011). – VESTA 3 for three-dimensional visualization of crystal, volumetric and morpholgy data. Journal of Applied Crystallography, 44, p. 1272-1276.

Moore, A. & Taylor, H. F. W. (1968). – Crystal structure of ettringite. Nature, 218, p. 1048-1049.

Murdoch, J. & Chalmers, R. A. (1960). – Ettringite (‘Woodfordite’) from Crestmore, California. American Mineralogist, 45, p. 1275-1278.

Nishio-Hamane, D., Ohnishi, M., Momma, K., Shimobayashi, N., Miyawaki, R., Minakawa, T. & Inaba, S. (2015). – Imayoshiite, Ca3Al(CO3)[B(OH)4](OH)6·12H2O, a new mineral of the ettringite group from Ise City, Mie Prefecture, Japan. Mineralogical Magazine, 79, p. 413-423.

Nocuò-Wczelik, W. (1999). – Effect of Na and Al on the phase composition and morphology of autoclaved calcium silicate hydrates. Cement and Concrete Research, 29, p. 1759-1767.

Passaglia, E. & Rinaldi, R. (1984). – Katoite, a new nember of the Ca3Al2(SiO4)3-Ca3Al2(OH)12 series and a new nomenclature for the hydrogrossular group of minerals. Bulletin de Minéralogie, 107, p. 605-618.

Peacor, D. R., Dunn, P. J. & Duggan, M. (1983). – Sturmanite, a ferric iron, boron analogue of ettringite. The Canadian Mineralogist, 21, p. 705-709.

Pekov, I. V, Chukanov, N. V, Britvin, S. N., Kabalov, Y. K., Göttlicher, J., Yapaskurt, V. O., Zadov, A. E., Krivovichev, S. V, Schüller, W. & Ternes, B. (2012). – The sulfite anion in ettringite-group minerals: a new mineral species hielscherite, Ca3Si(OH)6(SO4)(SO3)·11H2O, and the thaumasite-hielscherite solid-solution series. Mineralogical Magazine, 76, p. 1133-1152.

Pohwat, P. W. (2012). – Ettringite, N’Chwaning II Mine, Northern Cape Province, Republic of South Africa. Rocks & Minerals, 87, p. 430-435.

Poole, A. W. & Sims, I. (2015). – Concrete petrography - a handbook of investigative techniques (second edition). CRC Press, 816 p.

Raynal, J.-P., Paquereau, M.-M., Daugas, J.-P., Miallier, D., Fain, J. & Sanzelle, S. (1985). – Contribution à la datation du volcanisme quaternaire du Massif central français par thermoluminescence des inclusions de quartz et comparaison avec d’autres approches : implications chronostratigraphiques et paléoenvironnementales. Bulletin de l’Association Française pour l'étude du Quaternaire, 22, p. 183-207.

Sokol, E., Novikov, I., Vapnik, Y. & Sharygin, V. (2007). – Gas fire from mud volcanoes as a trigger for the appearance of high-temperature pyrometamorphic rocks of the Hatrurim Formation (Dead Sea area). Doklady Earth Sciences, 413, p. 474-480.

Sokol, E., Novikov, I., Zateeva, S., Vapnik, Y., Shagam, R. & Kozmenko, O. (2010). – Combustion metamorphism in the Nabi Musa dome: new implications for a mud volcanic origin of the Mottled Zone, Dead Sea area. Basin Research, 22, p. 414-438.

Sokol, E. V., Kokh, S. N., Vapnik, Y., Thiéry, V. & Korzhova, S. A. (2014). – Natural analogues of belite sulfoaluminate cement clinkers from Negev desert, Israel. American Mineralogist, 99, p. 1471-1487.

Stoppa, F. & Rosatelli, G. (2009). – Ultramafic intrusion triggers hydrothermal explosions at Colle Fabbri (Spoleto, Umbria), Italy. Journal of Volcanology and Geothermal Research, 187, p. 85-92.

Stoppa, F., Scordari, F., Mesto, E., Sharygin, V. V. & Bortolozzi, G. (2012). – Calcium-aluminum-silicate-hydrate ‘cement’ phases and rare Ca-zeolite association at Colle Fabbri, Central Italy. Central European Journal of Geosciences, 2, p. 175-187.

Taylor, H. F. ., Famy, C. & Scrivener, K. . (2001). – Delayed ettringite formation. Cement and Concrete Research, 31, p. 683-693.

Tilley, C. E. & Harwood, H. F. (1931). – The dolerite-chalk contact of Scawt Hill, Co. Antrim. The production of basic alkali-rocks by the assimilation of limestone by basaltic magma. Mineralogical Magazine, 132, p. 439-470.

Xu, L., Wang, P. & Zhang, G. (2012). – Formation of ettringite in Portland cement/calcium aluminate cement/calcium sulfate ternary system hydrates at lower temperatures. Construction and Building Materials, 31, p. 347-352.